SITE ASSESSMENT REPORT ADDENDUM II

FOR FACILITY 159 - GAS HILL FUEL FARM

Naval Air Station Jacksonville Jacksonville, Florida

COMPREHENSIVE LONG-TERM ENVIRONMENTAL ACTION NAVY (CLEAN) CONTRACT

Southern Division
Naval Facilities Engineering Command
Contract Number N62467-94-D-0888
Contract Task Order 0101

NOVEMBER 1999

SITE ASSESSMENT REPORT ADDENDUM II FOR FACILITY 159 – GAS HILL FUEL FARM

NAVAL AIR STATION JACKSONVILLE JACKSONVILLE, FLORIDA

COMPREHENSIVE LONG-TERM ENVIRONMENTAL ACTION NAVY (CLEAN) CONTRACT

Submitted to:
Southern Division
Naval Facilities Engineering Command
2155 Eagle Drive
North Charleston, South Carolina 29406

Submitted by: Tetra Tech NUS, Inc. Foster Plaza 7 661 Andersen Drive Pittsburgh, PA 15220-2745

CONTRACT NUMBER N62467-94-D-0888 CONTRACT TASK ORDER 0101

NOVEMBER 1999

PREPARED UNDER THE SUPERVISION OF:

GREGORY S. ROOF P.E.

TASK ORDER MANAGER

JACKSONVILLE, FLORIDA

APPROVED FOR SUBMITTAL BY:

DEBBIE WROBLEWSKI PROGRAM MANAGER TETRA TECH NUS, INC.

PITTSBURGH, PENNSYLVANIA

of SITE ASSESSMENT ADDENDUM II FOR Naval Air Station Jacksonville Facility 159 – Gas Hill Fuel Farm Jacksonville, Florida

Tetra Tech NUS, Inc. (TtNUS) has completed the Site Assessment (SA) Addendum II at the above-referenced facility in general accordance with the requirements of Chapter 62-770, Florida Administrative Code (FAC). This report is being submitted to the Florida Department of Environmental Protection (FDEP) for approval.

Facility 159 or Gas Hill Fuel Farm (Site) is located on Naval Air Station Jacksonville (NASJAX). The Tank Farm is contained within the bounds of NASJAX. Except for the St. Johns River about 2,000 feet north and east of the site, the Tank Farm is more than 0.5 mile from the closest landward boundary of the naval base.

TtNUS performed the following tasks during Phase 1 of the SA Addendum II:

- Reviewed the Contamination Assessment Report (CAR) and CAR Addendum I to assist with this field investigation.
- 2. Collected depth-to-groundwater measurements in the existing wells to evaluate the direction of groundwater flow.
- 3. Installed three shallow monitoring wells and one deep monitoring well downgradient of the impacted groundwater identified at Gas Hill Fuel Farm.
- 4. Collected groundwater samples from the 25 available, extant assessment wells and the four newly installed wells for laboratory analyses of volatile organic aromatics (VOA), polynuclear aromatic hydrocarbons (PAH), and lead (unfiltered).
- 5. Used the groundwater analytical data from Step 4 to determine the direct-push technology (DPT) boring and micro-well placement.

Then, the following tasks were conducted during Phase 2 of the SA Addendum II:

 Advanced five soil borings inside the Gas Hill Fuel Farm using DPT and collected soil samples for lab analyses of VOA, PAH, total recoverable petroleum hydrocarbons (TRPH), and the eight Resource Conservation and Recovery Act (RCRA) metals.

TtNUS-FY99-0229 ES-1 CTO 0101

- 2. Installed five shallow micro-wells inside the Gas Hill Fuel Farm and three shallow micro-wells near the southeast perimeter of Gas Hill Fuel Farm using DPT.
- Collected groundwater samples from the eight newly installed micro-wells for analyses of VOA, PAH, and lead (unfiltered).
- Reviewed well surveys provided by the U.S. Army Corps of Engineers (USACE) to identify potential receptors for petroleum hydrocarbons in the vicinity in accordance with Chapter 62-770.600(2)(I), FAC.
- 5. Collected soil samples and used the resulting analytical data to characterize the solid waste generated during this investigation for disposal purposes.
- 6. Coordinated and arranged for the transportation and disposal of the solid waste.

Excessively contaminated soil has been delineated on the periphery of the Gas Hill Fuel Farm in previous reports; however, as part of this investigation, field screening and confirmatory lab work were conducted on soils inside Gas Hill Fuel Farm. The OVA-FID screening inside the Tank Farm tentatively identified excessively contaminated soil; however, the lab analytical results indicated that the soils encountered did not exceed regulatory cleanup levels. In accordance with the definition of excessively contaminated soils in Chapter 62-770.200(8) FAC, the lab data nullifies the screening data and the soils are no longer considered excessively contaminated.

Petroleum hydrocarbon-impacted groundwater that exceeds for Groundwater Cleanup Target Levels (GCTLs) and natural attenuation criteria exists outside the southern perimeter of the Tank Farm, and appears to be migrating off of Gas Hill Fuel Farm toward the St. Johns River, which is approximately 2,000 feet east of the Site. For the present, the groundwater impacts on the southern perimeter of the Site have been delineated. Based on the results of this investigation and the two previous reports, TtNUS recommends the design of a Remedial Action Plan (RAP) to address the soil and groundwater contamination identified at Gas Hill Fuel Farm.

TABLE OF CONTENTS

SEC	TION		<u>PAGE</u>
EXE	CUTIVE	SUMMARY	ES-1
1.0 i	NTROD	UCTION	1-1
	1.1	PURPOSE AND SCOPE	1-1
	1.2	SITE DESCRIPTION	
	1.2.1	Location	
	1.2.2	Topography and Drainage	
	1.2.3	Regional Geology and Hydrogeology	1-7
	1.2.4	Land Use	
	1.2.5	Site Description	
	1.2.6	Potable Water Well Survey	1-7
	1.3	SITE HISTORY AND OPERATIONS	
	1.3.1	Site History	1-9
2.0	SUBSU	RFACE INVESTIGATION METHODS	2-1
	2.1	QUALITY ASSURANCE	
	2.2	SOIL BORING AND SAMPLING PROCEDURES	
	2.2.1	Monitoring Well Soil Borings-Offsite	
	2.2.2	Direct -Push Soil Borings-Offsite	
	2.2.3	Direct-Push Soil Borings-Onsite	
	2.3	WELL CONSTRUCTION	
	2.3.1	Two-inch Monitoring Well Construction and Development	2-3
	2.3.2 2.4	DPT Micro-Well Construction and DevelopmentLITHOLOGIC SAMPLING	
	2.4	SOIL ANALYSIS	
	2.6	HYDROGEOLOGIC INVESTIGATION	2-0 2-8
	2.6.1	Water Level Measurements	
	2.6.2	Aquifer Characteristics	
	2.7	GROUNDWATER SAMPLING	2-8
	2.7.1	Free Product Recovery and Sampling	2-8
	2.7.2	Groundwater Sampling of Monitoring Wells and Micro-Wells	2-9
3.0 F	RESULT	S OF INVESTIGATION	3-1
	3.1	SITE HYDROGEOLOGY	
	3.1.1	Lithology	3-1
	3.1.2	Aquifer Characteristics and Classification	
	3.2	SOIL QUALITY	
	3.3	MASS OF CONTAMINANT IN SOIL	
	3.4	WATER QUALITY	3-10
	3.4.1 3.4.2	Water Table Monitoring Wells Deep Monitoring Wells	2-10
		. •	
4.U C		SION	
	4.1	HISTORICAL SUMMARIES	
	4.2	SOIL DISCUSSIONGROUNDWATER DISCUSSION	4-2
	4.3 4.3.1	Water Table	
	4.3.1	Deep Wells	
	4.3.2 4.3.3	Natural Attentuation	
	7.0.0	144444 1444	···· ¬~¬

5.0	CONCLU	JSIONS AND RECOMMENDATION5-1
REF	ERENCE	:SR-1
<u>APP</u>	ENDICE	<u>S</u>
	A B C D E F G	SOIL BORING LOGS
	·	TABLES
NUM 1-1 1-2 1-3 3-1 3-2 3-3 3-4	Monitor Storage Water V Ground Soil OV Soil Ana	ing Well Coordinate and Elevation Data
		FIGURES
NUM	BER	<u>PAGE</u>
1-1 1-2 2-1 2-2 3-1 3-2 3-3 3-4	Site Pla Monitori DPT Mid Ground Ground Ground	ration Map

1.0 INTRODUCTION

1.1 PURPOSE AND SCOPE

This report encompasses a supplemental site investigation for Facility 159 – Gas Hill Fuel Farm conducted by Tetra Tech NUS, Inc. (TtNUS) for the U.S. Navy (Navy) Southern Division Naval Facilities Engineering Command (SOUTHDIV). The work was performed under Contract Task Order 0101, for the Comprehensive Long-term Environmental Action Navy (CLEAN III), Contract Number N62467-94-D-0888.

The U.S. Army Corps of Engineers (USACE) filed the first site investigation (a.k.a., Contamination Assessment Report [CAR]) for Gas Hill Fuel Farm (1992). Following a round of comments by the FDEP (Nuzie, 1992), the USACE responded with Addendum I to the CAR (1993). Since this is the second supplemental site investigation and in accordance with Chapter 62-770, Florida Administrative Code (FAC), this report will be referred to as the Site Assessment Report (SAR) Addendum II.

This investigation was initiated to determine the presence and extent of petroleum impacts to the groundwater at Gas Hill Fuel Farm located at NASJAX in accordance with the requirements of Chapter 62-770, FAC. The scope of work as outlined in the Contamination Assessment Plan (CAP) (TtNUS, 1999a) indicated that the soil impact due to petroleum hydrocarbons was delineated in the CAR and CAR Addendum I (USACE, 1992 and 1993) and would not be addressed during this investigation. However, soil vapor screening and soil sampling for lab analysis was done inside the facility since it appears this task was not done in the past. In regard to drilling activities outside the facility, soil vapor screening was done for health and safety purposes only. This groundwater investigation was planned to allow up to 14 monitoring wells to delineate the plume and investigate the Gas Hill Fuel Farm. Since the Gas Hill Fuel Farm is active, the assessment was planned as two phases of drilling. The first phase of the investigation involved drilling three water table wells and one deep well using conventional drilling methods at locations downgradient of the plume. This phase also included collection of a full round of samples from the assessment wells, and collection of data required to determine the direction of groundwater flow. Once the groundwater analytical data was evaluated, the second phase of the investigation involved the installation of soil borings and micro-wells, using DPT, to investigate the active Gas Hill Fuel Farm. Soil analytical data was collected during this phase because work inside the Gas Hill Fuel Farm had not been performed previously. DPT offered an opportunity to investigate the Gas Hill Fuel Farm with minimal disturbance to the tanks and piping. DPT was also used to place micro-wells downgradient of the first phase wells, as necessary.

1.2 SITE DESCRIPTION

1.2.1 Location

Gas Hill Fuel Farm is located near the northeast corner of NASJAX, which is in northeast Florida's Duval County west of the St. Johns River. The Tank Farm is contained within the bounds of NASJAX. Except for the St. Johns River about 2,000 feet north and east of the site, the Tank Farm is more than 0.5 mile from the closest landward boundary of the naval base. NASJAX is located near the tip of a peninsula between the Ortega and St. Johns Rivers, approximately 8 miles southwest of downtown Jacksonville, Florida. NASJAX lies within Township 3 South, Range 26 East, and Gas Hill Fuel Farm lies within Section 39. **Figure 1-1** depicts part of NASJAX with Gas Hill Fuel Farm shown as Site 159 near the upper right corner of the figure.

1.2.2 <u>Topography and Drainage</u>

The physiography, particular to the region and NASJAX was discussed in Section 3 and Appendix A of the CAR (USACE, 1992). The CAR stated that Site elevations "range from approximately 6 to 9 feet above msl (mean sea level)". **Table 1-1** provides the coordinates and elevation data for the newly installed monitoring wells, and it indicates a range of ground elevation from about 4.2 to 5.7 feet above msl for those wells offsite. This difference is due to an actual change in topography. The CAR was probably also referring to elevations around the Site and not on the hill because the elevations on Gas Hill Fuel Farm, as measured next to wells installed during this investigation, range from 19.2 to 22.8 feet above msl.

Figure 1-2 shows a drainage ditch on the north/northeast side of the Gas Hill Fuel Farm, which drains from the north side of the Site eastward to an outlet near monitoring well JAX-159-GH-7. Hereafter, the JAX-159 prefix on the assessment wells will be dropped and well numbers will only be preceded by the GH- nomenclature. Not shown on the map is a minor ditch that begins near GH-14 on the southeast side of the Site and tracks east for a short distance near GH-27 before changing direction toward the northeast. This minor ditch passes just to the west of wells GH-29 and GH-32. Both of these ditches appear to drain eastward to the St. Johns River.

Table 1-1 Monitoring Well Coordinate and Elevation Data

SAR Addendum II Facility 159 (Gas Hill Fuel Farm) Naval Air Station Jacksonville Jacksonville, Florida

WELL ID	NORTHING (Y)	EASTING (X)	DESCRIPTION	ELEVATION
GH-26	2145145.77	446182.17	TOP PVC TOP OF CONCRETE N. GRND	4.39 4.59 4.50
GH-27	2145141.48	446187.58	TOP PVC TOP OF CONCRETE N. GRND	4.74 4.92 4.80
GH-28	2145094.39	446225.58	TOP PVC TOP OF CONCRETE N. GRND	5.07 5.50 5.30
GH-29	2145123.92	446276.23	TOP PVC TOP OF CONCRETE N. GRND	5.16 5.34 5.10
GH-30	2145096.68	446171.88	TOP PVC TOP OF CONCRETE N. GRND	4.97 5.13 5.00
GH-31	2145087.88	446224.52	TOP PVC TOP OF CONCRETE N. GRND	5.47 5.64 5.40
GH-32	2145118.08	446375.40	TOP PVC TOP OF CONCRETE N. GRND	4.05 4.23 4.20
GH-33 See notes at	2145362.06	445848.22	TOP PVC TOP OF CONCRETE N. GRND	4.62 4.87 4.70

Table 1-1 (cont'd) Monitoring Well Coordinate and Elevation Data

SAR Addendum II Facility 159 (Gas Hill Fuel Farm) Naval Air Station Jacksonville Jacksonville, Florida

	NORTHING	EASTING	DESCRIPTION	ELEVATION
WELL ID	(Y)	(X)	DESCRIPTION	ELEVATION
GH-34	2145480.49	445751.69	TOP PVC	5.59
[[TOP OF CONCRETE	5.87
			N. GRND	5.70
GH-35	2146004.323	445707.11	TOP PVC	22.19
1			TOP OF CONCRETE	22.17
			N. GRND	21.84
GH-36	2145883.69	445860.53	TOP PVC	22.70
			TOP OF CONCRETE	22.91
			N. GRND	22.80
GH-37	2145762.54	445942.46	TOP PVC	19.72
			TOP OF CONCRETE	19.99
			N. GRND	19.90
GH-38	2145630.61	446077.36	TOP PVC	21.03
			TOP OF CONCRETE	21.35
			N. GRND	21.30
GH-39	2145812.14	446158.12	TOP PVC	18.97
			TOP OF CONCRETE	19.29
ĺ			N. GRND	19.20

Notes: PVC = poly vinyl chloride.

N.GRND = measurement of ground elevation on north side of pad.

Rev. 0 11/19/99

1.2.3 Regional Geology and Hydrogeology

The CAR (USACE, 1992) provides an adequate discussion of the regional hydrogeology, as such, this information will not be repeated here.

1.2.4 Land Use

Gas Hill Fuel Farm is located northeast of the runways at NASJAX. The Site is depicted on **Figure 1-2**. Currently the Site has 15 active underground storage tanks (UST) (**Table 1-2**), which were installed as a bulk fuel storage and distribution facility. The tanks have a total capacity of approximately 4 million gallons, and they stored various petroleum-based fuels. Three of these USTs are still active. Currently, the Navy has plans to deactivate Gas Hill Fuel Farm in the near future.

Access to Gas Hill Fuel Farm is limited because of its proximity to the runways and the single road that leads to the Site. Other facilities north of the Gas Hill Fuel Farm include jet engine test cells, an antenna site, and a fuel pier. Security personnel, who control access to the flight line, also control access to Gas Hill Fuel Farm. A chain link fence encompasses the perimeter of the Site and the Navy's security personnel patrol the area regularly.

1.2.5 Site Description

Gas Hill Fuel Farm is a man-made mound containing 15 UST. Only a small portion of each tank exists above land surface along with some associated piping. Except for a gravel/asphalt/concrete road that encircles the Site to allow access to the tanks, the Site is covered in grass. On the edge of the Gas Hill Fuel Farm, the land quickly slopes from an artificial grade of about 20 feet above msl to about 10 feet above msl. Then a narrow grassy corridor surrounds the Site before a fence is reached that encompasses the Site. The road mentioned earlier slopes down to the south corner of the Site where the only entrance to the Site exists. The entrance is gated and Navy personnel keep it locked when they are not onsite. The Site's road connects to Catapult Road (Figure 1-2).

1.2.6 Potable Water Well Survey

The water supply information presented in this report was obtained from the CAR (USACE, 1992) which includes potable well supply data and large-diameter non-potable well supply data. The Navy's point of contact for water well data at NASJAX, Mr. David Ford, was also contacted to update the data (TtNUS, 1999b). The data for Wells 1 through 6, 9, 12 and 13 (**Table 1-3**) remain unchanged; however, wells 7, 8,

Table 1-2 **Storage Tank Data**

SAR Addendum II Facility 159 (Gas Hill Fuel Farm) Naval Air Station Jacksonville Jacksonville, Florida

TANK NO.	DATE INSTALLED	CAPACITY (gal)	CONSTRUCTION INFORMATION	CONTENTS	STATUS
159-A	1943	250,000	Concrete, interior lined	JP-5	0
159-B	1943	250,000	Concrete, interior lined	JP-5	0
159-C	1943	250,000	Concrete, interior lined	JP-5	0
159-D	1943	250,000	Concrete, interior lined	JP-5	0
159-E	1943	250,000	Concrete, interior lined	Avgas	0
159-F	1943	100,000	Concrete, interior lined	Avgas	0
159-G	1943	50,000	Concrete, interior lined	JP-5	0
159-H	1943	250,000	Concrete, interior lined	JP-5	0
159-l	1943	100,000	Concrete, interior lined	JP-5	0
159-J	1944	1,550	Steel, interior lined	Diesel	R
159-K	1944	1,550	Steel, interior lined	Diesel	R
159-L	1953	567,000	Steel, interior lined, cathodic protection	JP-5	0
159-M	1953	567,000	Steel, interior lined, cathodic protection	JP-5	I
159-N	1953	567,000	Steel, interior lined, cathodic protection	JP-5	ı
159-O	1953	567,000	Steel, interior lined, cathodic protection	JP-5	I

Reference: TtNUS, 1999c.

Notes:

I = in service.

R = removed.

O = out of service.

10 and 11 have been properly abandoned according to Mr. Ford. Since there have been no additions to the wells surveyed from 1992, it appears that the nearest documented water supply wells are situated (greater than 0.5-mile upgradient from the Site) in such a way as to "preclude any effects from the shallow contaminants" at Gas Hill Fuel Farm (USACE, 1992).

1.3 SITE HISTORY AND OPERATIONS

1.3.1 Site History

A history of Gas Hill Fuel Farm is explained in Section 2.2 of the CAR (USACE, 1992), which briefly tells about the Site until the beginning of the CAR. During the CAR investigation, the USACE drilled 12 4-foot borings (159-1 through 159-12) and executed 53 soil gas probes. The USACE concluded in the CAR that soil contamination is confined to spill areas on Gas Hill Fuel Farm. They also installed 13 permanent monitoring wells (GH-1 through GH-13). **Figure 1-2** indicates the location of those wells. Nine of the wells were set between 10 and 12.5 feet below land surface (bls) to intercept the water table while GH-11 and GH-12 were set to approximately 33 feet bls. According to the groundwater flow map (USACE, 1992), the water table flows radially from the center of the Site and follows the area's southeasterly groundwater flow direction after moving away from the Gas Hill Fuel Farm. The analytical results from the CAR indicated that groundwater contamination was present in 5 of the 13 wells (GH-1, 2, 3, 8, and 13). Except for GH-8, which is about 300 feet north of the southern tip of Gas Hill Fuel Farm, the other wells are located along the southwestern perimeter of Gas Hill Fuel Farm. The CAR indicated that horizontal groundwater contamination "beyond the Site boundaries appears to be coincident with embankment seepage and historic spills", and that the vertical extent of contamination does not exceed 25 feet bls.

Following a review by the FDEP (Nuzie, 1992), the USACE did a supplemental investigation that involved additional soil and groundwater assessment (1993). The soil investigation indicated that an area of excessively contaminated soil exists along a 40-foot wide strip beginning from the western-most corner of the facility for about 250 feet south along the fence line. Other soil data for the remainder of the Site indicated a smaller area (less than 2,500 square feet) just outside the fence line on the eastern side of the Site between the Site and Catapult Road (USACE, 1993). They also installed seven water table wells (GH-14 through 19 and 22) and two deep wells (GH-20 and 21). The analytical results from a complete round of samples for wells GH-1 through 22 indicated that "shallow groundwater contamination exists outside the boundary fence, along the southwestern edge of the fuel farm" and that vertical contamination

Table 1-3 Water Well Survey

SAR Addendum II Facility 159 (Gas Hill Fuel Farm) Naval Air Station Jacksonville Jacksonville, Florida

Well No.	Usage	Casing Diameter (inches)	Total Depth (feet)	Casing Depth (feet)	Notes
1	Potable	12	1215	380	Water Plant No. 1
2	Potable	18	1200	400	Water Plant No. 1
3	Potable	18	1200	400	Water Plant No. 1
4	Potable	12	1015	312	Water Plant No. 2
5	Potable	12	988	400	Water Plant No. 3
6	Potable	12	646	271	Water Plant No. 4
7	Non-potable	4	?	?	Properly Abandoned, 1990
8	Non-potable	8	400	288	Properly Abandoned, 1999
9	Non-potable	12	800	?	Black Point-Kemen Test Cell
10	Non-potable	10	1096	316	Properly Abandoned, 1999
11	Non-potable	4	407	251	Properly Abandoned, 1999
12	Non-potable	6	120	120	
13	Non-potable	4	650	120	

References: USACE, 1992 and TtNUS, 1999b.

Notes:

? - data unknown or unavailable.

in the area does not extend "to the 30 to 35-foot level." A meeting between the FDEP, Navy, and the USACE resulted in an agreement to monitor the groundwater quarterly.

The last round of groundwater monitoring completed at the Site was conducted on September 29 and 30, 1998 on monitoring wells GH-6 through 9, 13 through 17, 19, 20, and 22 through 27. Wells GH-23, 25 and 27 were installed (circa 1997) as deep wells while GH-24 and 26 were drilled (also, circa 1997) as water table wells. The monitoring report (TtNUS, 1998b) indicated contamination that exceeded FDEP GCTL in samples from monitoring wells GH-14, 15, 23, 26 and 27. At that time, the concentrations in the water table wells indicated that petroleum contaminants were present above GCTL in downgradient wells, which left the plume undefined to the southeast. Although no contaminants were detected in the zone from 35 to 40 feet bls (GH-25), well GH-27 screened from 30 to 35 feet bls was reported to have increasing levels of benzene above the GCTL which left that zone undefined to the southeast. The monitoring report recommended that the monitoring program be discontinued until completion of the SAR Addendum II and approval of the resulting report.

2.0 SUBSURFACE INVESTIGATION METHODS

2.1 QUALITY ASSURANCE

The Site investigation was conducted in general accordance with the Standard Operating Procedures (SOP) prescribed by the FDEP Quality Assurance Section Document DER-001/92, and adopted by the TtNUS Comprehensive Quality Assurance Plan (CompQAP) Number 980038 (1998a).

2.2 SOIL BORING AND SAMPLING PROCEDURES

2.2.1 Monitoring Well Soil Borings-Offsite

On July 26 and 27, 1999, four proposed sites were post-holed by Precision Drilling, Inc., under the supervision of TtNUS personnel in preparation for installing 2-inch diameter monitoring wells (GH-28, GH-29, GH-30 and GH-31) to track the progress of the groundwater contaminant plume. Each proposed well site was post-holed to 4 feet bls for the purpose of utility location and to characterize lithology. As indicated in Section 1.1, soil delineation was not considered necessary offsite. The locations of the monitoring wells are shown on **Figure 1-2**. Soil boring logs are included in **Appendix A**.

Soil cuttings generated during the soil boring activities and subsequent well installations were placed in 55-gallon steel drums and labeled as investigative-derived waste (IDW). Soil samples were collected on July 30, 1999, from the drums generated during this phase of drilling. The samples were labeled NASJ-159-GH-IDW-01. A grab sample was collected from one of the drums generated during the installation of GH-28, and it was sent for analysis of VOA using United States Environmental Protection Agency (EPA) Method 8021B. Soils from several drums were collected and homogenized in a pre-cleaned stainless steel bowl to provide a composite soil sample for analyses of PAH using EPA Method 8310; TRPH using Florida – Petroleum Residual Organics (FL-PRO); and, the eight RCRA metals using EPA Method 6010B. IDW soil analytical data sheets are in **Appendix B** and the disposal manifest is in **Appendix C**.

2.2.2 Direct-Push Soil Borings-Offsite

On August 30, 1999, three proposed sites outside the Gas Hill Fuel Farm were post-holed by Precision Drilling, Inc., under the supervision of TtNUS personnel in preparation for installing 0.5-inch diameter micro-wells (GH-32, GH-33, and GH-34). Each proposed well site was post-holed to 4 feet bls for the purpose of utility location, to characterize lithology, and to measure soil vapor concentrations for health and safety. The locations of the monitoring wells are shown on **Figure 1-2**. Soil boring logs are included in **Appendix A**.

Soil cuttings generated during the post-holing activities were placed in a 55-gallon steel drum. That drum was also used to store the soils generated during the DPT work inside the Gas Hill Fuel Farm.

2.2.3 Direct-Push Soil Borings-Onsite

On August 31 and September 1, 1999, five proposed sites inside the Gas Hill Fuel Farm were post-holed to 4 feet bls in preparation of DPT activities. DPT was specifically used to minimize the potential for damaging subsurface utilities. These drilling methods were also used to characterize lithology and to provide samples for collection of soil vapor concentration data. The work was done by Precision Drilling, Inc., under the supervision of TtNUS personnel in preparation for installing 0.5-inch diameter micro-wells (GH-35, GH-36, GH-37, GH-38 and GH-39). After post-holing, DPT soil samples were collected using two-foot long stainless steel split barrel samplers lined with plastic sleeves. Soil samples were collected continuously from the ground surface to the water table (between 13 and 17.5 feet bls). Soil boring locations, which are coincident with the well locations, are depicted on **Figure 1-2**. Soil boring logs are included in **Appendix A**.

Soil samples were visually inspected for evidence of staining. Samples were collected during post-holing and DPT soil sampling and screened with an OVA-FID. Soil vapor analysis was performed in accordance with the headspace screening method prescribed by Chapter 62-770 FAC.

The driller installed a second DPT borehole within 1 foot of each original borehole. The second borehole at each location was advanced to the depth of the high vapor reading for the purpose of obtaining a fresh, discreet sample for submittal to a laboratory. If no petroleum hydrocarbon vapors were detected in the first borehole using the OVA, an arbitrary depth of four feet bls was chosen to collect a sample for confirmation of the clean soil. So, one soil sample was collected from each of the five borings drilled

inside the Gas Hill Fuel Farm. The samples were sent to a laboratory for analyses explained in Section 2.5.

Soil cuttings generated during the DPT soil boring activities were placed in a 55-gallon steel drum. Since, soil samples were collected from each boring and analyzed for compounds similar to pre-burn requirements, those results were used to characterize the IDW for pre-burn disposal. Soil analytical data sheets are in **Appendix D** and the disposal manifest is in **Appendix C**.

2.3 WELL CONSTRUCTION

2.3.1 <u>Two-inch Monitoring Well Construction and Development</u>

On July 26 and 27, 1999, monitoring wells were installed in conjunction with the soil boring procedures discussed above in Section 2.2.1. The monitoring wells were placed to provide spatial coverage downgradient of wells which contained previously reported elevated hydrocarbon levels near the southeast corner of the Site.

Shallow monitoring wells GH-29, GH-30, and GH-31 were advanced using 8.25-inch outside diameter (OD) hollow-stem augers. Each well was constructed of 2-inch inside diameter (ID) threaded, Schedule 40 poly vinyl chloride (PVC) solid riser and 0.010-inch slot well screen with a silt trap and well bottom cap. These wells were installed to approximately 13 feet bls with a 10-foot screened interval. Each annulus was filled to approximately 1 foot above the well screen with US Standard Sieve size, 20/30-grade silica sand. The 20/30 sand was capped to about 1.2 or 1.5 feet bls with bentonite chips. The remainder of the annulus was grouted to the surface with Portland cement. Each well is secured with a locking, watertight cap within a steel, 8-inch diameter bolt-down manhole. The manhole was set within a 24-inch square concrete pad, which was finished slightly above grade. A well construction diagram is included as **Figure 2-1.** Well completion logs are provided in **Appendix E.**

The deep monitoring well (GH-28) was double-cased to minimize the downward migration of contaminants in the water table to the intended screen interval for this well. Twelve-inch OD hollow-stem augers were used to set a 6-inch ID threaded, Schedule 40 PVC solid riser with a bottom cap to a depth of approximately 15 feet bls. The annulus was filled to approximately 1 foot bls with Portland cement, and this secondary casing was allowed to set for approximately 24 hours. Then it was drilled out with a 6-inch OD tri-cone bit using mud rotary techniques. The primary casing for the well was constructed of 2-inch ID threaded, Schedule 40 PVC solid riser and 0.010-inch slot well screen with a silt trap and well bottom cap. This well was installed to approximately 35 feet bls with a 5-foot screened interval. The annulus was filled

to approximately 2 feet above the well screen with US Standard Sieve size, 20/30-grade silica sand. The 20/30 sand was capped to about 2 feet bls with bentonite chips. The remainder of the annulus was grouted to the surface with Portland cement. The well is secured with a locking, watertight cap within a steel, 8-inch diameter bolt-down manhole. The manhole was set within a 24-inch square concrete pad, which was finished slightly above grade. A well construction diagram is included as **Figure 2-1**. The well completion logs are provided in **Appendix E**.

Each well was developed using a submersible pump. During well development, field measurements of pH, temperature and specific conductance were monitored from the purge water generated. The wells were developed under supervision of a geologist up to a maximum of one hour or until the field measurements became stable and the purge water clear. Water quality stabilization was determined using the following criteria: temperature plus or minus (+/-) 0.5 degrees Celsius (°C), pH +/- 0.1 standard unit, and specific conductance +/- 10 millisiemens per centimeter (mS/cm).

2.3.2 <u>DPT Micro-Well Construction and Development</u>

On August 30, 1999, three DPT micro-wells (GH-32, GH-33, and GH-34) were installed outside the Gas Hill Fuel Farm under the supervision of TtNUS personnel in conjunction with the soil boring procedures discussed above in Section 2.2.2. The wells were installed to a depth of 11.5 or 12.5 feet bls. The monitoring wells were placed to provide coverage downgradient of elevated hydrocarbon levels detected in samples from upgradient monitoring wells sampled between July 29 and August 3, 1999.

On August 31 and September 1, 1999, five DPT micro-wells (GH-35, GH-36, GH-37, GH-38 and GH-39) were installed inside the Gas Hill Fuel Farm for reasons discussed in Section 2.2.3 and in conjunction with soil boring activities. The well depths varied between 21 and 25.5 feet bls in order to intercept the water table with approximately 1 foot of screen above it. These micro-wells were placed to provide water level information and to screen the water table inside the Gas Hill Fuel Farm for contaminants.

The installation of the DPT micro-wells began with 2.125-inch OD probe rods advanced to a field-determined depth using a Geoprobe percussion-probing machine. The permanent monitoring well was assembled and installed through the 1.5-inch ID of the probe rods. The wells were constructed with prepacked screens and 0.5-inch Schedule 80 PVC well riser. The pre-packed screens came in 3-foot sections, which were threaded together to provide 9-foot screens for each well. These screens have an outside diameter of 1.5 inches and an inside diameter of 0.5 inches. The inner component of the pre-packed screens consists of 0.5-inch Schedule 80 PVC with 0.01-inch slots. The outer component of the

TtNUS-FY99-0229

screen is stainless steel wire mesh with a pore size of 0.011 inches. The screens are pre-packed with 20/40-grade silica sand. Once the rods were set at depth, the pre-packed screens were lowered through the probe rods as additional PVC riser was added to the well assembly. The pre-packed screens were attached to an expendable stainless steel anchor on the end of the probe rods by a locking connector threaded to the bottom of the pre-packed screen. When the pre-packed screens were locked into the anchor point the probe rods were retracted. As the rods were retracted above the screens, 20/30-grade silica sand was installed through the rod annulus to a thickness of 1 to 3 feet above the top of the screen. The remainder of the annulus was grouted to the surface with Portland cement.

The well is secured with a locking, watertight cap within a steel, 8-inch diameter bolt-down manhole. The manhole was set within a 24-inch square concrete pad, which was finished slightly above grade. A well construction diagram for the micro-wells is included as **Figure 2-2**. The well completion logs are provided in **Appendix E**.

2.4 LITHOLOGIC SAMPLING

Soil samples were collected during the soil vapor assessment\DPT micro-well installation to assess the shallow subsurface geologic conditions inside the Gas Hill Fuel Farm. Grab samples from soil cuttings generated during monitoring well installations were used for lithologic description. Soil samples from the Gas Hill Fuel Farm that were used for lithologic description were collected from a stainless steel split spoon sampler lined with plastic sleeves. Soil boring logs are included as **Appendix A**.

2.5 SOIL ANALYSIS

As previously explained, the CAR (USACE, 1992) adequately (as agreed upon by regulators previously) determined the extent of soil contamination related to Gas Hill Fuel Farm. Since soil data had not previously been collected inside the Gas Hill Fuel Farm, soil samples were collected as explained in Section 2.2.3. The samples were placed in the appropriate bottleware, packed and transported for the following analyses: VOA by EPA Method 8021B; PAH by EPA Method 8310; TRPH by FL-PRO; and, the eight RCRA metals by EPA Method 6010B. The laboratory data reports are included in **Appendix D**.

2.6 HYDROGEOLOGIC INVESTIGATION

2.6.1 Water Level Measurements

Water level measurements were collected to determine the depth to water in the surficial aquifer and to determine the relative groundwater flow direction. The depth to water in the existing monitoring wells (GH-1 through GH-27) and the new monitoring wells (GH-28 through GH-31) was measured on July 28, 1999. The depth-to-water data for well GH-18 was not collected because this well could not be located. Measurements were collected from the north rim of the top of the well casings using an electronic oil and water level indicator. No free product was detected in these monitoring wells. Water level measurements were also collected from shallow micro-wells GH-32 through GH-39 on September 2, 1999 using a smalldiameter water level indicator. The elevation of the north rim for each top of well casing (GH-28 through GH-39) was surveyed by ARC Surveying (Table 1-1). They also surveyed GH-26 and GH-27 to allow for ease of plotting the new monitoring wells on the site plan (Figure 1-2), and the elevation data was compared to previous data to determine any differences between previous and present survey data. The newly surveyed top-of-casing data for GH-26 and GH-27 turned out to be exactly 1.2 feet lower than that previously reported (1998b). Therefore, the top-of-casing data for wells GH-1 through GH-27 were lowered by 1.2 feet assuming that the difference was uniform. Elevations are based on North American Vertical Datum (NAVD) 1988 and they were transferred from benchmark "Tidal BM No. 2-14". The published elevation for that benchmark is 15.57 feet. The groundwater elevation was calculated by subtracting the depth to water from the top of casing elevation.

2.6.2 Aquifer Characteristics

The CAR (USACE, 1992) presented groundwater hydraulic conductivity testing data and tidal influence monitoring data on wells GH-6 and GH-12. Therefore, these tasks were not repeated during this investigation.

2.7 GROUNDWATER SAMPLING

2.7.1 Free Product Recovery and Sampling

Free product was not discovered in groundwater monitoring wells GH-1 through GH-31 during this investigation. Due to the size limitations of the well pipe (0.5-inch ID) in micro-wells GH-32 through GH-39, fluid measurements could only be conducted with a water level indicator. However, laboratory data

(discussed in Section 3.4) indicate that hydrocarbon concentrations were low in samples from those wells. The data implies that free product was not present in micro-wells GH-32 through GH-39.

2.7.2 Groundwater Sampling of Monitoring Wells and Micro-Wells

Groundwater sampling of monitoring wells and micro-wells was performed to determine the presence or absence of dissolved petroleum hydrocarbons in groundwater in the vicinity of Gas Hill Fuel Farm. Groundwater samples were collected by TtNUS personnel wells as follows: GH-23, GH-25 through GH-31 on July 29, 1999; GH-1, GH-12, GH-14, GH-15, GH-21, GH-22, and GH-24 on July 30, 1999; GH-2, GH-3, GH-9, GH-10, GH-13, GH-16, GH-17, and GH-19 on August 2, 1999; GH-4 through GH-8 and GH-20 on August 3, 1999; GH-32 through GH-37 on September 2, 1999; and, GH-38 and GH-39 on September 3, 1999. As previously indicated, a sample was not collected from GH-18 because that well could not be located. Additionally, GH-11 was not sampled because on two occasions when TtNUS field crews plumbed that well, they encountered an obstruction at about 8 to 9 feet below the top-of-casing. The groundwater samples were analyzed for constituents outlined in the CAP (TtNUS, 1999a) as follows: EPA Method 8021B for VOA, EPA Method 8310 for PAH, EPA Method 239.2 for lead (unfiltered). Prior to sampling, approximately three to five well volumes of groundwater were purged from each well using low flow quiescent sampling methods. Temperature, pH, specific conductance and turbidity measurements and well purge volumes were recorded at the time of sample collection. Groundwater sample log sheets are in Appendix F. Groundwater samples were placed on ice and shipped to Accutest Laboratories, Inc., Orlando, Florida.

Sampling activities were performed in general accordance with the procedures prescribed in the FDEP Quality Assurance Sections: Standard Operating Procedures for Laboratory Operations and Sample Collection Activities, (DEP-001/92), adopted by TtNUS' CompQAP. In accordance with DEP-001/92 section 4.4.2, sample preservation was accomplished using pre-preserved containers from a laboratory with an FDEP-approved CompQAP (Accutest Laboratories, Inc.). During the sampling events, quality control samples (e.g. trip blanks and duplicates) were prepared and submitted to the laboratory as required by the CompQAP. Sampling activities were documented in a site-specific field logbook, and samples were transmitted under chain-of-custody protocols to the laboratory. Groundwater laboratory data are included in **Appendix G**.

3.0 RESULTS OF INVESTIGATION

3.1 SITE HYDROGEOLOGY

3.1.1 <u>Lithology</u>

The soil data collected offsite appeared similar to that reported in the CAR's Figure 4-C (USACE, 1992), which indicated mostly silty sands with a thin lens (less than 2 feet thick) of clayey sand on the eastern end of the cross-section at a depth less than 10 feet bls. The soil data from onsite was considered fill dirt and consisted mostly of fine-grained silty sands with the exception being the soils from the boring for well GH-38. Since adequate cross-sections exist from a previous report (USACE, 1993) and our data does not contradict this info, no lithologic cross-section was constructed for this addendum. Soil boring logs are included as **Appendix A**.

3.1.2 Aquifer Characteristics and Classification

The surficial aquifer underlying the Site was classified in the CAR (USACE, 1992) as a G-II aquifer. They also performed aquifer characterization studies to determine hydraulic conductivity, hydraulic gradient, groundwater seepage velocity and transmissivity. During the current investigation, the elevation of the shallow aquifer ranged from 0.37 to 7.36 feet msl. The depth-to-groundwater measurements are presented in **Table 3-1**. The groundwater flow direction for the water table is depicted in **Figure 3-1**. The drastic change in topography from the top of Gas Hill Fuel Farm to the perimeter support the conclusion that the groundwater flows radially off Gas Hill Fuel Farm. The CAR (USACE, 1992) indicated that groundwater flow in the surficial aquifer was generally toward the east, which is toward the St. Johns River.

Table 3-1 Groundwater Elevation and Monitoring Well Construction Data

SAR Addendum II Facility 159 (Gas Hill Fuel Farm) Naval Air Station Jacksonville Jacksonville, Florida

			June 29 ar	nd 30, 1998	September 2	9 and 30, 1998
Well Number JAX-159-GH-	Screened Interval Depth (feet, bls)	Top-of Casing Elevation (feet)	Depth to Water Below Top of Casing (feet)	Water Elevation (feet)	Depth to Water Below Top of Casing (feet)	Water Elevation (feet)
6	2.0 to 11.0	6.79	5.40	1.39	2.64	4.15
7	1.0 to 10.0	5.94	4.39	1.55	2.69	3.25
8	3.5 to 12.5	11.34	8.29	3.05	5.92	5.42
9	1.0 to 10.0	9.25	8.35	0.90	4.20	5.05
13	1.0 to 10.0	10.44	7.54	2.90	4.89	5.55
14	0.6 to 10.6	9.55	6.73	2.82	4.30	5.25
15	0.7 to 10.7	9.36	6.28	3.08	3.46	5.90
16	0.6 to 10.1	9.32	5.93	3.39	3.33	5.99
17	1.6 to 11.6	8.59	7.43	1.16	4.41	4.18
19	0.8 to 10.8	6.38	3.51	2.87	1.12	5.26
20	30.9 to 36.0	5.89	2.85	3.04	2.72	3.17
22	3.9 to 13.9	10.04	7.72	2.32	4.06	5.98
23	25.0 to 30.0	8.60	5.69	2.91	3.60	5.00
24	2.6 to 12.0	8.73	6.09	2.64	3.43	5.30
25	35.0 to 40.0	5.77	2.50	3.27	1.77	4.00
26	2.0 to 12.0	5.59	3.25	2.34	0.30	5.29
27	30.0 to 35.0	5.93	2.25	3.68	1.25	4.68

Notes: bls= below land surface.

Table 3-1 (Cont'd) Groundwater Elevation and Monitoring Well Construction Data

SAR Addendum II Facility 159 (Gas Hill Fuel Farm) Naval Air Station Jacksonville Jacksonville, Florida

		Top-of	July 28, 1	1999	September	2, 1999
Well Number JAX-159-GH-	Screened Interval Depth (feet,bls)	Casing Elevation (feet)	Depth to Water Below Top of Casing (feet)	Water Elevation (feet)	Depth to Water Below Top of Casing (feet)	Water Elevation (feet)
1	1.0 to 10.0	9.02	6.93	2.09	NM	NM
2	1.0 to 10.0	9.29	6.79	2.50	NM	NM
3	1.0 to 10.0	8.38	6.36	2.02	NM	NM
4	1.0 to 10.0	5.36	3.58	1.78	NM	NM
5	1.0 to 10.0	5.67	5.03	0.64	NM	NM
6	2.0 to 11.0	5.59	4.91	0.68	NM	NM
7	1.0 to 10.0	4.74	2.74	2.00	NM	NM
8	3.5 to 12.5	10.14	8.01	2.13	NM	NM
9	1.0 to 10.0	8.05	6.41	1.64	NM	NM
10	1.0 to 10.0	6.97	6.60	0.37	NM	NM
11	29.5 to 33.5	6.09	4.00	2.09	NM	NM
12	29.0 to 33.0	5.92	4.10	1.82	NM	NM
13	1.0 to 10.0	9.24	6.43	2.81	NM	NM
14	0.6 to 10.6	8.35	6.24	2.11	NM	NM
15	0.7 to 10.7	8.16	5.98	2.18	NM	NM
16	0.6 to 10.1	8.12	5.72	2.40	NM	NM
17	1.6 to 11.6	7.39	6.34	1.05	NM	NM
18	1.7 to 10.7	n/a	n/a	n/a	NM	NM
19	0.8 to 10.8	5.18	3.06	2.12	NM	NM
20	30.9 to 36.0	4.69	3.05	1.64	NM	NM
21	31.5 to 36.0	8.81	6.60	2.21	NM	NM
22	3.9 to 13.9	8.84	7.13	1.71	NM	NM
23	25.0 to 30.0	7.40	5.29	2.11	NM	NM
24	2.6 to 12.0	7.53	5.70	1.83	MM	NM
25	35.0 to 40.0	4.57	2.40	2.17	NM	NM
26	2.0 to 12.0	4.39	2.53	1.86	NM	NM
27	30.0 to 35.0	4.73	2.58	2.15	NM	NM
28	30.0 to 35.0	5.07	2.60	2.47	NM	NM
29	3.0 to 13.0	5.16	3.12	2.04	NM	NM
30	3.0 to 13.0	4.97	2.50	2.47	NM	NM
31	3.0 to 13.0	5.47	2.84	2.63	NM	NM
32	2.5 to 11.5	4.05	NM	NM	1.82	2.23
33	2.5 to 11.5	4.62	NM	NM	2.50	2.12
34	3.5 to 12.5	5.59	NM	NM	3.20	2.39
35	15.5 to 24.5		NM	NM	0.00	
36	16.5 to 25.5	22.70	NM	NM	15.34	7.36
37	12.0 to 21.0	19.72	NM	NM	12.59	7.13
38	13.0 to 22.0	21.03	NM	NM	15.10	5.93
39	14.0 to 23.0	18.97	NM	NM	13.70	5.27

NM=not measured.

3.2 SOIL QUALITY

As discussed previously, the soil impacts to the Site have been delineated by the CAR (USACE, 1992). During this investigation, TtNUS personnel collected soil vapor concentration data from inside the Gas Hill Fuel Farm, there were vapor concentrations in soils from borings associated with GH-35, GH-38 and GH-39 that indicated the presence of petroleum hydrocarbons in the range of 0 to 800 parts per million (ppm). **Table 3-2** contains the soil OVA-FID data.

As discussed in Section 2.2 and 2.5, soil samples were collected from the zone of highest soil vapor concentration. These soil samples were collected from the boreholes associated with wells GH-35 through GH-39. The depths at which the sampling took place were 16, 4, 4, 14, and 14 feet bls, respectively. The soil samples were collected on August 31 and September 1, 1999, and they were labeled as follows: NASJ-159-GH-35-16, NASJ-159-GH-36-4, NASJ-159-GH-37-4, NASJ-159-GH-38-14, and NASJ-159-GH-39-14.

Soil analytical data were reviewed and compared to Soil Cleanup Target Levels (SCTL) based on leachability of compounds to groundwater from Chapter 62-777. VOA (specifically, ethylbenzene and xylenes below 10 parts per billion) were detected only in the sample from GH-39-14, and those compounds detected were well below the SCTL. There were no detections of TRPH in the soil samples. Though various metals were detected in each of these soil samples, they were below the respective SCTL. With regard to PAH, the only compounds detected were in samples from GH-35-16, GH-37-4, and GH-39-14. When compared to the appropriate SCTL, the soil analytical data indicate that none of the samples exceeded those goals. The laboratory results have been included in **Appendix D**. The results are summarized for PAH data on **Table 3-3**.

3.3 MASS OF CONTAMINANT IN SOIL

The existing area of impacted soil was graphically represented in the CAR Addendum (USACE, 1993). Since the soil analytical data collected for the Gas Hill Fuel Farm during this investigation doesn't indicate additional areas of contamination, this report and will not re-report this information.

Table 3-2 Soil OVA-FID Data

SAR Addendum II Facility 159 (Gas Hill Fuel Farm) Naval Air Station Jacksonville Jacksonville, Florida

			Head	space Readings (į	opm)
Monitoring Well I.D.	Date of Measurement	Sample Depth (feet bls)	Total Organic Reading	Carbon Filtered Reading	Net Reading
GH-35	8/31/99	2	0	NA	0
	8/31/99	4	0	NA	0
	8/31/99	6	0	NA	0
	8/31/99	8	0	NA	0
	8/31/99	10	0	NA	0
	8/31/99	12	0	NA	0
	8/31/99	14	0	NA	0
	8/31/99	16	190	85	105
	8/31/99	18 ²	350	300	50
	8/31/99	20 ²	990	425	565
GH-36	8/31/99	2	0	NA	0
	8/31/99	4	0	NA	0
	8/31/99	6	0	NA	0
	8/31/99	8	0	NA	0
	8/31/99	10	0	NA	0
	8/31/99	12	0	NA	0
	8/31/99	14	0	NA	0
	8/31/99	16	0	NA	0
	8/31/99	18¹	0	NA	0
GH-37	8/31/99	2	0	NA	0
	8/31/99	4	0	NA	0
	8/31/99	6	0	NA	0
	8/31/99	8	0	NA	0
	8/31/99	10	0	NA	0
	8/31/99	12	0	NA	0
	8/31/99	13	0	NA	0
	8/31/99	14 ¹	10	9	1

Table 3-2 (cont'd) Soil OVA-FID Data

SAR Addendum II Facility 159 (Gas Hill Fuel Farm) Naval Air Station Jacksonville Jacksonville, Florida

Manitarina Wall	Data of	Commis Danih	Head	space Readings (g	opm)
Monitoring Well I.D.	Date of Measurement	Sample Depth (feet bls)	Total Organic Reading	Carbon Filtered	Net Reading
GH-38	9/1/99		neading	Reading	
GH-30		2	U	NA	0
	9/1/99	4	0	NA	0
	9/1/99	6	0	NA	0
	9/1/99	8	20	19	1
	9/1/99	10	88	25	63
	9/1/99	12	300	251	49
_	9/1/99	14	995	600	395
GH-39	9/1/99	2	0	NA	0
	9/1/99	4	0	NA	0
	9/1/99	6	0	NA	0
	9/1/99	8	50	0	50
	9/1/99	10	500	100	400
	9/1/99	12	500	0	500
	9/1/99	14	1000	200	800

Notes: NA=not analyzed.

bls=below land surface.

ppm=part per million equivalent methane.

ND=not determined.

I.D.=inside diameter.

Sample depth below the water table.

Table 3-3 Soil Analytical Data

SAR Addendum II Facility 159 (Gas Hill Fuel Farm) Naval Air Station Jacksonville Jacksonville, Florida

		,		
Compound	FDEP SCTL ¹	NASJ-159-GH-35-16	NASJ-159-GH-36-4	NASJ-159-GH-37-4
	001E	8/31/99	8/31/99	8/31/99
Depth (feet)		16	4	4
Volatile Organic Hydrocar	bons (EPA I	Method 8021) mg/kg		
Ethylbenzene	0.6	0.0011 U	0.0012 U	0.0010 U
m-Xylene & p-Xylene	0.2	0.0020 U	0.0020 U	0.0020 U
Metals (EPA Method 6010)	mg/kg			
Arsenic	29	0.60 U	0.60 U	0.60 U
Barium	1600	24 U	22 U	25 U
Chromium	38 ²	2.0	1.6	1.0 U
Lead	***	1.0 U	2.9	1.5
Selenium	5	2.0 U	2.0 U	2.0 U
Polynuclear Aromatic Hyd	rocarbons (EPA Method 8310) mg/k	Κ g	
Fluorene	160	0.0040 U	0.0037 U	0.0042 U
Fluoranthene	1200	0.0040 U	0.0037 U	0.0050 1
Pyrene	880	0.0020 U	0.0019 U	0.0054 I
Benzo (a) anthracene	3.2	0.0020 U	0.0019 U	0.0021 U
Chrysene	77	0.0020 U	0.0019 U	0.0042
Benzo (b) flouranthene	9.8	0.0040 U	0.0030 U	1 0300.0
Benzo (k) fluoranthene	25	0.0020 U	0.0020 U	0.0020 I
Benzo (a) pyrene	7.8	0.0020 U	0.0020 U	0.0080
Dibenzo (a,h) anthracene	14	0.0040 U	0.0037 U	0.012
Benzo (g,h,l) perylene	32000	0.0040 U	0.0037 U	0.012
Indeno (1,2,3-cd) pyrene	28	0.0020 U	0.0019 U	0.0054
1-methylnaphthalene	2.2	0.041	0.037 U	0.042 U
2-methylnaphthalene	6.1	0.044	0.037 U	0.042 U
See Notes at end of table.				

Table 3-3 (cont'd) Soil Analytical Data

SAR Addendum II Facility 159 (Gas Hill Fuel Farm) Naval Air Station Jacksonville Jacksonville, Florida

		odonoon viilo, i lond	-
Compound	FDEP SCTL ¹	NASJ-159-GH-38-14	NASJ-159-GH-39-14
	SCIL	9/1/99	9/1/99
Depth (feet)		14	14
Volatile Organic Hydrocar	bons (EPA N	Method 8021) mg/kg	
Ethylbenzene	0.6	0.0015 U	0.0042 I
m-Xylene & p-Xylene	0.2	0.0020 U	0.010 I
Metals (EPA Method 6010)	mg/kg		
Arsenic	29	0.60 U	1.8 I
Barium	1600	25 U	32
Chromium	38 ²	1.4	7.0
Lead	***	1.9	28
Selenium	5	2.0 U	2.0
Polynuclear Aromatic Hyd	rocarbons (EPA Method 8310) mg/l	<u>kg</u>
Fluorene	160	0.0042 U	0.0080
Fluoranthene	1200	0.0042 U	0.0080
Pyrene	880	0.0021 U	0.0022 U
Benzo (a) anthracene	3.2	0.0021 U	0.0020 I
Chrysene	77	0.0021 U	0.018
Benzo (b) flouranthene	9.8	0.0040 U	0.0040 U
Benzo (k) fluoranthene	25	0.0020 U	0.0020 U
Benzo (a) pyrene	7.8	0.0020 U	0.0020 U
Dibenzo (a,h) anthracene	14	0.0042 U	0.022
Benzo (g,h,l) perylene	32000	0.0042 U	0.0043 U
Indeno (1,2,3-cd) pyrene	28	0.0021 U	0.0020
1-methylnaphthalene	2.2	0.042 U	0.210
2-methylnaphthalene	6.1	0.042 U	0.180

¹Chapter 62-777, FAC (August 5, 1999). SCTL based on leachability as it affects Groundwater Criteria on Table II.

Notes: EPA = Environmental Protection Agency.

FDEP = Florida Department of Environmental Protection.

SCTL = Soil Cleanup Target Level.

mg/kg = milligrams per kilogram.

U = Compound was analyzed but not detected to the level shown.

I = analyte detected; value is between the Method Detection Level (MDL) and the Practical Quantitation Level (PQL).

² Value is for hexavalent chromium.

^{***} Values must be derived.

3.4 WATER QUALITY

3.4.1 <u>Water Table Monitoring Wells</u>

The analytical data for the groundwater samples from the water table monitoring wells were compared to FDEP GCTL. The analytical results from the early August sampling event indicated the GCTL were exceeded in the following water table monitoring wells: GH-1, GH-2, GH-14, GH-15, GH-22, GH-26, and GH-29. With the exception of GH-2, the only GCTL exceeded in the groundwater samples from these monitoring wells was for benzene. The benzene concentrations ranged from 1.2 to 270 micrograms per liter (μ g/L). The concentrations reported for the sample from GH-2 for ethylbenzene (38 μ g/L) and total xylenes (758 μ g/L) exceeded their respective GCTL.

A similar comparison of GCTL values with the results from the sampling (early September) event for the DPT micro-wells indicated that 1- and 2-methylnaphthalene were detected at 99 and 62 μg/L, respectively, in the sample from GH-35, and the sample from GH-39 contained benzene at 3.2 μg/L. These second round results exceeded the respective GCTL. Lead levels for the water table samples from both sampling events were below the method detection level of 0.0060 milligrams per liter (mg/L), which is below the GCTL of 0.015 mg/L. The results for both sampling events are summarized in **Table 3-4**. The benzene concentration data is presented on **Figure 3-2**. The total VOA (TVOA [defined by Chapter 62-770.200(27) as the sum of the concentrations of benzene, toluene, total xylenes and ethylbenzene]) map, as required by Chapter 62-770.600(7)(a)26, is presented on **Figure 3-3**. Since the only remaining concentrations of significance belong to the naphthalene group (naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene), that concentration data is presented on **Figure 3-4**. Groundwater laboratory analytical results are provided as **Appendix G**.

3.4.2 Deep Monitoring Wells

The analytical data for the deep monitoring wells (GH-12, GH-20, GH-21, GH-23, GH-25, GH-27, and GH-28) was reviewed and compared to GCTL data. Only samples from deep monitoring wells GH-23 and GH-27 exceeded GCTL. The sample from GH-23 contained benzene (100 μ g/L), ethylbenzene (44 μ g/L), and total xylenes (113 μ g/L), which exceeded the respective GCTL. The sample from GH-27 contained benzene at 31 μ g/L, which exceeds the GCTL for that compound. Lead levels for the deep zone groundwater samples were below the method detection level of 0.0060 milligrams per liter (mg/L), which is below the GCTL of 0.015 mg/L. The benzene concentration data is presented on **Figure 3-2**, the TVOA

concentration data is presented on **Figure 3-3**, and the naphthalenes concentration data is presented on **Figure 3-4**. Groundwater laboratory analytical results are provided as **Appendix G**.

Table 3-4
Groundwater Analytical Data

Compound	FDEP GCTL ¹	FDEP NADSC ¹	1/10/92	0/0/00		59-GH-1							JAX-159-GH-2	2		
Volatile Organic Co	mpounds	(IISEDA Mo	1/10/92	2/9/93	9/4/97	12/4/97	6/30/98	9/30/98	7/30/99	1/10/92	2/9/93	9/4/97	12/4/97	6/30/98	9/29/98	8/2/99
Benzene	IIIDANIIAS									ł						
	1	100	300	230	NA	NA	NA	NA	130	BDL	1.1	NA	NA	ALA		
Toluene	40	400	13	6.5	NA	NA	NA	NA	10 U.	BDL				NA	NA	6.0
Ethy!benzene	30	300	61	30	NA	NA	NA	NA	_		1.9	NA	NA	NA	NA	8.0
Total Xvienes	20	200	88	BDL.					10 U	7.4	16	NA	NA	NA	NA	38
MTBE	35				NA	NA	NA	NA	10 U	14	85	NA	NA	NA	NA	758
WITDE	35	350	39	BDL	NA	NA	NA	NA	20 U	BDL	BDL	NA	NA	NA	NA	10 U
Polynuclear Aromat	ic Hydroc	arbons (USI	PA Method	8310\(ug/L)												
1-Methylnaphthalene	20	NL	BDL	NA	NA	NA										
2-Methylnaphthalene	20	NL					NA	NA	1.0 U	BDL	NA	NA	NA	NA	NA	1.0 U
			BDL	NA	NA	NA	NA	NA	1.0 U	BDL	NA	NA	NA	NA	NA	3.3
Naphthalene	20	200	BDL	BDL	NA	NA	NA	NA	0.70 1	BDL	BDL	NA NA				
		<u> </u>						. 47 1	0.70 1		DUL	IVA	NA	NA	NA	2.0

Compound	FDEP GCTL ¹	FDEP NADSC ¹			JAX-1	59-GH-3							IAX-159-GH-	4		
Voletile Onesule O			1/10/92	2/9/93	9/4/97	12/4/97	6/30/98	9/30/98	8/2/99	1/10/92	2/9/93	9/4/97	12/4/97	6/30/98	9/29/98	8/3/99
Volatile Organic Cor	<u>mpounds</u>	(USEPA Me	hod 8021B)(ua/ <u>i.)</u>			-						12,	400,00	1 3/23/30	0/3/99
Benzene	1	100	BDL	BDL	NA	NA	NA	NA	1.0 U	BDL	BDL	NA	NIA.			
Toluene	40	400	BDL	BDL	NA	NA	NA	NA	1.0 U	BDL			NA	NA	NA	1.0 U
Ethylbenzene	30	300	BDL	BDL	NA	NA NA	NA	NA.			BDL	NA	NA	NA	NA	1.0 U
Total Xvienes	20	200	BDL	BDL	NA	NA NA			1.0 U	BDL	BDL	NA	NA	NA	NA	1.0 U
МТВЕ	35	350	BDL				NA	NA	1.0 U	BDL	BDL	NA	NA	NA	NA	1.0 U
I''' DE	33	330	BUL	BDL	NA	NA	NA	NA	2.0 U	BDL	BDL	NA	NA	NA	NA	2.0 U
Polynuclear Aromat	ic Hydroc	arbons (USI	PA Method	8310)(ua/L)						:						
1-Methylnaphthalene		NL	80	80	NA	NA	NA	NA	3.7	BDL	NA	NA	B1A	NIA.		40.11
2-Methylnaphthalene	20	NL	BDL	NA	NA.	NA	NA.	NA.	1.0 U	BDL			NA	NA	NA	1.0 U
Naphthalene	20	200	19	19	NA	NA NA	NA NA		-		NA	NA	NA	NA	NA	1.0 U
See Notes at end of t					IN/A	IVA	NA	NA	0.50 U	BDL	BDL	<u>N</u> A	NA	NA	NA	0.50 U

Compound	FDEP GCTL ¹	FDEP NADSC ¹			JAX-	159-GH-5						JAX-1	59-GH-6			
			1/10/92	2/9/93	9/4/97	12/4/97	6/30/98	9/30/98	8/3/99	1/10/92	2/9/93	9/4/97	12/4/97	6/30/98	9/30/98	8/3/99
Volatile Organic Cor	<u>mpounds</u>	(USEPA Me	thod 8021B)	(ua/L)									123-1701	400/00	3/00/30	0,0,33
Benzene	1	100	BDL.	BDL	NA	NA	NA	NA	1.0 U	BDL	BDL	ND	ND	ND	ND	1.0 U
Toluene	40	400	BDL	BDL	NA	NA	NA	NA	1.0 U	BDL	BDL	ND	ND	ND	ND	
Ethylbenzene	30	300	BDL.	BDL	NA	NA	NA	NA	1.0 U	BDL.	BDL	ND	ND	ND ND	ND	1.0 U
Total Xylenes	20	200	BDL	BDL	NA	NA	NA	NA	1.0 U	BDL	BDL	ND	ND	ND		1.0 U
MTBE	35	350	BDL	BDL	NA	NA	NA	NA	2.0 Ú	BDL	BDL	ND	ND	ND	ND ND	1.0 U 2.0 U
Polynuclear Aromat	ic Hydroc	arbons (US)	EPA Method	8310)(µa/L)												
1-Methylnaphthalene	20	NL	BDL	NA NA	NA	NA	NA	NA	1.0 U	BDL	NA	ND	ND	ND	ND	40.11
2-Methylnaphthalene	20	NL	BDL	NA	NA	NA	NA	NA	1.0 U	BDL	NA	ND	ND	ND ND	ND ND	1.0 U
Naphthalene	20	200	BDL	BDL	NA.	NA	NA	NA.	0.50 U	BDL	BDL	ND	ND	ND	ND ND	1.0 U 0.50 U

Compound	FDEP GCTL ¹	FDEP NADSC ¹			•	JAX-159-GH-	7					JAX-	159-GH-8			
			1/10/92	2/9/93	9/4/97	12/4/97	6/30/98	9/29/98	8/3/99	1/10/92	2/9/93	9/4/97	12/4/97	6/29/98	9/29/98	8/3/99
Volatile Organic Cor	npounds	(USEPA Met	thod 8021B)	(ua/L)	-							0, 1,01	1 121-1701	1 423/30	3/23/30	0/0/99
Benzene	1	100	BDL	BDL	ND	ND	ND	ND	1.0 U	4.9	BDL	ND	ND	ND	ND	1.0 U
Toluene	40	400	BDL	BDL	ND	ND	ND	ND	1.0 U	BDL.	1.2	ND	ND	ND	ND	1.0 U
Ethylbenzene	30	300	BDL	BDL.	ND	ND	ND	ND	1.0 U	BDL	BDL	ND	ND	ND	ND	1.0 U
Total Xylenes	20	200	BDL	BDL	ND	ND	ND	ND	1.0 U	BDL	BDL	ND	ND	ND	ND	1.0 U
MTBE	35	350	BDL	BDL	ND	ND	ND	ND	2.0 U	BDL	BDL	ND	ND	ND	ND	2.0 U
Polynuclear Aromat	ic Hydroc	arbons (US)	EPA Method	8310)(µa/L)												
1-Methylnaphthalene	20	NL	BDL	NA .	ND	ND	ND	ND	1.0 U	BDL	NA	ND	ND	ND	ND	1.0 U
2-Methylnaphthalene	20	NL	BDL	NA	ND	ND	ND	ND	1.0 U	BDL	NA.	ND	ND	ND	ND	1.0 U
Naphthalene	20	200	BDL	BDL	ND	ND	ND	ND	0.50 U	BDL	BDL	ND	ND	ND	ND	0.50 U
See Notes at end of to	able.												110	110		0.00 0

Compound	FDEP GCTL ¹	FDEP NADSC ¹			J	JAX-159-GH-	9					J	AX-159-GH-1	0		
<u></u>			1/10/92	2/9/93	9/4/97	12/4/97	6/30/98	9/29/98	8/2/99	1/10/92	2/9/93	9/4/97	12/4/97	6/30/98	9/29/98	8/2/99
Volatile Organic Cor	npounds	(USEPA Me	thod 8021B)(ua/L)									12 (/01	. 0,00,00	0/20/00 j	<u> </u>
Benzene	1	100	BDL	BDL	ND	ND	ND	ND	1.0 U	BDL	BDL	NA	NA	NA	NA	1.0 U
Toluene	40	400	BDL	1.4	ND	ND	ND	ND	1.0 U	BDL	BDL	NA	NA	NA.	NA.	1.0 U
Ethylbenzene	30	300	BDL	BDL	ND	ND	ND	ND	1.0 U	BDL	BDL	NA	NA	NA	NA	1.0 U
Total Xylenes	20	200	BDL	BDL	ND	ND	ND	ND	1.0 U	BDL	BDL	NA	NA.	NA	NA NA	1.0 U
MTBE	35	350	BDL	BDL	ND	ND	ND	ND	2.0 U	BDL	BDL	NA	NA	NA	NA	2.0 U
Polynuclear Aromat	ic Hydroc	arbons (US	EPA Method	8310)(ua/L)												
1-Methylnaphthalene		NL	BDL	NA	ND	ND	ND	ND	1.0 U	BDL	NA	NA	NA	NA	NA	1.0 U
2-Methylnaphthalene	20	NL	BDL	NA	ND	ND	ND	ND	1.0 U	BDL.	NA.	NA.	NA.	NA	NA	1.0 U
Naphthalene	20	200	BDL	BDL	ND	ND	ND	ND	0.50 U	BDL	BDL	NA	NA.	NA	NA	0.50 U

Compound	FDEP GCTL ¹	FDEP NADSC ¹				159-GH-11						J	AX-159-GH-	12		
			1/10/92	2/9/93	9/4/97	12/4/97	6/30/98	9/30/98	7/30/99	1/10/92	2/9/93	9/4/97	12/4/97	6/30/98	9/29/98	7/30/99
Volatile Organic Co	<u>mpounds</u>	(USEPA Met	hod 8021B)	(ua/L)										0,00,00	0,20,00	1700700
Benzene	1	100	BDL	BDL	NA	NA	NA	NA	NA	BDL	BDL	NA	NA	NA	NA	1.0 U
Toluene	40	400	BDL	BDL	NA	NA	NA	NA	NA	BDL	BDL	NA	NA	NA NA	NA	1.0 U
Ethylbenzene	30	300	BDL	BDL	NA	NA	NA	NA	NA.	BDL	BDL	NA	NA	NA NA	NA	1.0 U
Total Xylenes	20	200	BDL	BDL	NA	NA	NA	NA.	NA.	BDL	BDL	NA	NA.	NA NA	NA NA	
MTBE	35	350	BDL	BDL	NA	NA	NA	NA.	NA	BDL	BDL	NA NA	NA NA	NA NA	NA NA	1.0 U 2.0 U
Polynuclear Aromat	ic Hydroc	arbons (USI	EPA Method	8310)(ua/L)										7.0.1		2.0 0
1-Methylnaphthalene	20	NL	BDL	NA	NA	NA	NA	NA	NA	BDL	NA	NA	NA	NA	NA	1.0 U
2-Methylnaphthalene	20	NL	BDL	NA	NA	NA	NA	NA	NA	BDL	NA	NA	NA	NA	NA	1.0 U
Naphthalene	20	200	BDL.	150	NA	NA	NA	NA	NA	BDL	BDL	NA	NA.	NA.	NA	0.50 U
See Notes at end of t	able.	•												,		

Compound	FDEP GCTL ¹	FDEP NADSC ¹			JAX-	159-GH-13						J	AX-159-GH-1	4		
			1/10/92	2/9/93	9/4/97	12/4/97	6/30/98	9/29/98	8/2/99	1/10/92	2/9/93	9/4/97	12/4/97	6/29/98	9/29/98	7/30/99
Volatile Organic Cor	npounds	(USEPA Me	thod 8021B)(ua/L)							2,0,00	0, 1, 0,	12701	<u> </u>	3123130	1100/99
Benzene	1	100	2.0	BDL.	ND	ND	ND	ND	1.0 U	NA	58.0	830	13	1160	19.0	270
Toluene	40	400	BDL	BDL	ND	ND	ND	ND	1.0 U	NA	BDL	31	ND	83.4	ND	20 U
Ethylbenzene	30	300	BDL	BDL	ND	ND	ND	ND	1.4	NA	BDL	52	ND	186	ND	20 U
Total Xylenes	20	200	BDL	BDL	ND	ND	ND	ND	14.5	NA	BDL	139	ND	693	ND	20 U
MTBE	35	350	BDL.	BDL	ND	ND	ND	ND	2.0 U	NA	BDL	ND	ND	ND	ND	40 U
Polynuclear Aromat	ic Hydroc	arbons (USI	EPA Method	8310)(ua/L)												
1-Methylnaphthalene	20	NL	BDL	NA	ND	ND	ND	ND	1.0 U	NA	NA	ND	ND	ND	ND	1.0 U
2-Methylnaphthalene	20	NL	BDL	NA	ND	ND	ND	ND	1.0 U	NA.	NA.	ND	ND	ND	ND	1.0 U
Naphthalene	20	200	BDL	BDL	ND	ND	ND	ND	0.50 U	NA	BDL	ND	ND	ND	ND	0.90

Compound	FDEP GCTL ¹	FDEP NADSC ¹				59-GH-15						J/	AX-159-GH-1	6		
			1/10/92	2/9/93	9/4/97	12/4/97	6/30/98	9/29/98	7/30/99	1/10/92	2/9/93	9/4/97	12/4/97	6/30/98	9/29/98	8/2/99
Volatile Organic Cor	npounds	(USEPA Me	thod 8021B)	(ug/L)									· <u> </u>	400,00	0,20,00	4200
Benzene	1	100	NA	850	94	280	287	308	260	NA NA	BDL	ND	ND	ND	ND	1.0 U
Toluene	40	400	NA	200	10	ND	6.2	2.7	20 U	NA.	BDL	ND	ND	ND	ND	1.0 U
Ethylbenzene	30	300	NA	54	11	15	14.9	8.9	20 U	NA.	BDL	ND	ND	ND	ND	1.0 U
Total Xylenes	20	200	NA	190	26	ND	13.5	3.3	20 U	NA.	BDL	ND	ND	ND	ND	1.0 U
MTBE	35	350	NA	BDL	ND	ND	ND	ND	40 U	NA	BDL	ND	ND	ND	ND	2.0 U
Polynuclear Aromat	ic Hydroc	arbons (US)	EPA Method	8310){ug/L})											
1-Methylnaphthalene	20	NL	NA	NA	ND	ND	ND	ND	1.0 U	l na	BDL.	ND	ND	ND	ND	1.0 U
2-Methylnaphthalene	20	NL	NA	NA	ND	ND	ND	ND	1.0 U	NA.	BDL	ND	ND	ND	ND	1.0 U
Naphthalene	_20	200	NA NA	BDL	ND	ND	ND	ND	1.7	NA.	BDL	ND	ND	ND	ND	0.50 U
See Notes at end of to	able.									·				.,,,		

Compound	FDEP GCTL ¹	FDEP NADSC ¹			JAX-1	59-GH-17						J,	AX-159-GH-	18		
			1/10/92	2/9/93	9/4/97	12/4/97	6/30/98	9/29/98	8/2/99	1/10/92	2/9/93	9/4/97	12/4/97	6/30/98	9/29/98	8/2/99
Volatile Organic Cor	mpounds	(USEPA Me	thod 8021B)	(ug/L)					4.200	1,10,02	23300	314131	12/4/91	0/30/96	9/29/96	8/2/99
Benzene	1	100	NA	BDL	ND	ND	ND	ND	1.0 U	NA	BDL	NA	NA	NA	NA	NA
Toluene	40	400	NA	BDL	ND	ND	ND	ND	1.0 U	NA NA	2.3	NA.	NA NA	NA NA	NA NA	
Ethylbenzene	30	300	NA	BDL	ND	ND	ND	ND	1.0 U	NA	BDL	NA NA	NA NA			NA
Total Xylenes	20	200	NA	BDL	ND	ND	ND	ND	1.0 U	NA NA	BDL	NA NA	NA NA	NA	NA	NA
MTBE	35	350	NA	BDL	ND	ND	ND	ND	2.0 U	NA NA	BDL	NA NA	NA NA	NA NA	NA NA	NA NA
Polynuclear Aromat	ic Hydrod	arbons (US)	EPA Method	8310)(µa/L)												
1-Methylnaphthalene	20	NL	NA	BDL	ND	ND	ND	ND	1.0 U	NA	BDL	NA	NA	NA	ATA	ALA
2-Methylnaphthalene	20	NL	NA	BDL	ND	ND	ND	ND	1.0 U	NA	BDL	NA	NA NA		NA	NA
Naphthalene	20	200	NA	BDL	ND	ND	ND	ND	0.50 U	NA	BDL			NA	NA	NA
								<u></u>	0.00	IV/A	סטר	NA	NA	_ NA	NA	NA

Compound	FDEP GCTL ¹	FDEP NADSC ¹			J	AX-159-GH-1	9					JAX-1	59-GH-20			
			1/10/92	2/9/93	9/4/97	12/4/97	6/30/98	9/29/98	8/2/99	1/10/92	2/9/93	9/4/97	12/4/97	6/30/98	9/29/98	8/3/99
Volatile Organic Cor	npounds	(USEPA Me	hod 8021B)	ug/L)								5, ., 5,	12 101	400/30	3/23/30	0/3/99
Benzene	1	100	NA	BDL	22	ND	20.4	ND	1.0 U	NA NA	BDL	ND	ND	ND	ND	1.0 U
Toluene	40	400	NA	BDL	ND	ND	ND	ND	1.0 U	NA.	BDL	ND	ND	ND	ND ND	1.0 U
Ethylbenzene	30	300	NA	BDL	ND	ND	ND	ND	1.0 U	NA NA	BDL.	ND	ND	ND		
Total Xylenes	20	200	NA	BDL	ND	ND	ND	ND	1.0 U	NA NA	BDL	ND	ND ND		ND	1.0 U
MTBE	35	350	NA	BDL	ND	ND	ND	ND	2.0 U	NA NA	BDL	ND ND	ND ND	ND ND	ND	1.0 U
							145	110	2.0 0	l INC	DUL	ND	ND	MD	ND	2.0 U
Polynuclear Aromat	ic Hydroc	arbons (USI	EPA Method	8310\{ua/L)						!						
1-Methylnaphthalene		NL	NA	BDL	ND	ND	ND	ND	1.0 U	NA NA	BDL	ND	ND	ND	ND	1,0 U
2-Methylnaphthalene	20	NL	NA	BDL	ND	ND	ND	ND	1.0 U	NA NA	BDL	ND	ND	ND	ND	1.0 U
Naphthalene	20	200	NA	BDL	ND	ND	ND	ND	0.50 U	NA NA	BDL	ND	ND	ND	ND	0.50 U
See Notes at end of t						.,,,,,		110	0.00 0	1 14/7	DUL	עאו	IND	NU	ND	0.50 0

																1
Compound	FDEP GCTL ¹	FDEP	ADSC ¹ 1/10/92 2/9/93 9/4/97 12/4/97 6/30/98 9/20/98 7/20/99 1/10/92 9/9/97 12/4/97 6/30/98 9/20/98 7/20/99 1/10/92 9/9/97 1/10/92 9/9/97 12/4/97 6/30/98 9/20/98 7/20/99 1/10/92 9/9/97 9/9/97 9/9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/97 9/9/9/97 9/9/97 9/9/97 9/9/9/97 9/9/9/97 9/9/9/97 9/9/97 9/9/97 9/9/9/97 9/9/97 9/9/97 9/9/97 9/9/9/97 9/9/9/97 9/9/9/97 9/9/97 9/9/													
				2/9/93	9/4/97	12/4/97	6/30/98	9/29/98	7/30/99	1/10/92	2/0/03	0///07	12///07	6/20/00	0/00/00	7/30/99
Volatile Organic Cor	mpounds	(USEPA Me	thod 8021B)	(ug/L)					1700700	17 10/02	23330	314131	12/4/91	0/30/96	9/29/98	1/30/99
Benzene	1	100	NA	BDL	NA	NA	NA	NA	1.0 U	NA	BDL	ND	ND	1.5	ND	1.2
Toluene	40	400	NA	BDL	NA	NA	NA	NA	1.0 U	NA	BDL	ND	ND	ND	ND	
Ethylbenzene	30	300	NA	BDL	NA	NA	NA	NA	1.0 U	NA.	BDL	ND		-		1.0 U
Total Xylenes	20	200	NA	BDL	NA	NA	NA	NA	1.0 U	NA NA	BDL	ND ND	ND ND	ND ND	ND ND	1.0 U 1.0 U
MTBE	35	350	NA	BDL	NA	NA	NA	NA	2.0 U	NA	BDL	ND	ND	ND	ND	2
Polynuclear Aromat	ic Hydroc	arbons (US)	EPA Method	8310) <i>(</i> µg/L))											
1-Methylnaphthalene	20	NL	NA	BDL	NA	NA	NA	NA	1.0 U	NA	BDL	ND	ND	ND	ND	40.11
2-Methylnaphthalene	20	NL	NA	BDL	NA	NA	NA	NA	1.0 U	NA	BDL	ND	. –		ND	1.0 U
Naphthalene	20	200	NA	BDL	NA	NA.	NA.	NA	0.50 U				ND	ND	ND	1.0 U
						14/7	14/4	144	0.50 0	NA	BDL	ŊD	ND	ND	ND	0.50 U

Compound	FDEP GCTL ¹	FDEP NADSC ¹			JAX-1	59-GH-23		 				J,	AX-159-GH-2	24		
			1/10/92	2/9/93	9/4/97	12/5/97	6/29/98	9/29/98	7/29/99	1/10/92	2/9/93	9/4/97	12/5/97	6/29/98	9/29/98	7/30/99
Volatile Organic Cor	<u>mpounds</u>	(USEPA Me	hod 8021B)	(ua/L)			-						120701	GE0/00	3/23/30	1100133
Benzene	1	100	NA	NA	630	620	202	296	100	NA	NA	650	260	823	ND	1.0 U
Toluene	40	400	NA	NA	36	70	6.4	27.7	12	NA.	NA.	34	10	44.4	ND ND	
Ethylbenzene	30	300	NA	NA	230	280	46.1	143	44	NA.	NA	50	24			1.0 U
Total Xylenes	20	200	NA	NA	590	830	45.0	436	113	NA NA	NA NA	122		83.8	ND	3.2
MTBE	35	350	NA	NA	14	ND	ND	ND	10 U	NA NA	NA NA	ND	38 ND	209 ND	ND ND	2.1 3.5
Polynuclear Aromat	ic Hydroc	arbons (USI	PA Method	8310)(ug/L)												
1-Methylnaphthalene	20	NL	NA	NA	ND	ND	ND	ND	1.0 U	NA	NA	ND	ND	ND	ND	1.0 U
2-Methylnaphthalene	20	NL.	NA	NA	ND	ND	ND	ND	1.0 U	NA.	NA.	ND	ND	ND	ND	1.0 U
Naphthalene	20	200	NA	NA	ND	ND	ND	ND	4.3	NA.	NA	ND	ND	ND ND	ND	0.90
See Notes at end of t	able.						.,,,,,	110	7.0	13/1	14/1	ND.	IND	ND	ואט	0.90

																
Compound	FDEP GCTL ¹	FDEP NADSC ¹			JAX-1	59-GH-25						J	AX-159-GH-2	26	·	
			1/10/92	2/9/93	9/4/97	12/4/97	6/29/98	9/29/98	7/29/99	1/10/92	2/9/93	9/4/97	12/4/97	6/29/98	9/29/98	7/00/00
Volatile Organic Cor	mpounds	(USEPA Me	thod 8021B)	ua/L)					1720,00	1,10,02	20,00		1 124/51	<u>U/29/90</u>	9/29/96	7/29/99
Benzene	1	100	NA	NA NA	ND	ND	1.2	ND	1.0 U	NA	NA	ND	ND	897	20	0.0
Toluene	40	400	NA	NA	ND	ND	ND	ND	1.0 U	NA NA	NA	ND	ND		32	9.9
Ethylbenzene	30	300	NA	NA	ND	ND	ND	ND	1.0 U	NA	NA NA	ND ND		60.1	ND	1.0 U
Total Xylenes	20	200	NA	NA	ND	ND	ND	ND	1.0 U	NA NA	NA NA	ND ND	ND ND	119	5.6	1.0 U
MTBE	35	350	NA	NA	ND	ND	ND	ND	2.0 U	NA	NA	ND	ND	303 ND	ND ND	1.0 U 2.0 U
Polynuclear Aromat	ic Hydrod	arbons (US	EPA Method	8310)(ua/L)												
1-Methylnaphthalene	20	NL	NA	NA	ND	ND	ND	ND	1.0 U	NA	NA	ND	ND	ND	ND	40.11
2-Methylnaphthalene	20	NL	NA	NA	ND	ND	ND	ND	1.0 U	NA NA	NA	ND	ND ND		ND	1.0 U
Naphthalene	20	200	NA	NA	ND	ND	ND	ND	0.50 U	NA NA	NA NA			ND	ND	1.0 U
					.,,,,,	140	140	IND	0.00 0	INA	NA	ND	ND	<u>N</u> D	ND	0.50 U

Compound	FDEP GCTL ¹	FDEP NADSC ¹				159-GH-27							JAX-159-GH-	28	·	
			1/10/92	2/9/93	9/4/97	_ 12/4/97	6/29/98	9/29/98	7/29/99	1/10/92	2/9/93	9/4/97	12/4/97	6/29/98	9/29/98	7/29/99
Volatile Organic Cor	mpounds	(USEPA Me	thod 8021B)(ug/L)									1	<u> </u>	0,25,50	1123/33
Benzene	1	100	NA	NA	ND	ND	3.4	122	31	NA	NA	NA	NA	NA	NA	1.0 U
Toluene	40	400	NA	NA	ND	ND	ND	3.8	1.0 U	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	
Ethylbenzene	30	300	NA	NA	ND	ND	ND	17.2	1.0 U	NA NA	NA NA	NA NA	NA NA			1.0 U
Total Xvienes	20	200	NA	NA	ND	ND	ND	12.1	1.0 U	NA	NA NA			NA	NA	1.0 U
MTBE	35	350	NA	NA	ND	ND	ND					NA	NA	NA	NA	4.7
52	00	000	11/7	INA	ND	ND	ND	ND	2.0 U	NA	NA	NA	NA	NA	NA	2.0 U
Polynuclear Aromat		arbons (US)	PA Method	8310)(µg/L)												
1-Methylnaphthalene	20	NL	NA	NA	ND	ND	ND	ND	1.0 U	NA NA	NA	NA	NA	NA	NA	1.0 U
2-Methylnaphthalene	20	NL	NA	NA	ND	ND	ND	ND	1.0 U	NA.	NA.	NA.	NA.	NA.	NA	1.0 U
Naphthalene	20	200	NA	NA	ND	ND	ND	ND	0.50 U	NA NA	NA	NA	NA	NA NA	NA NA	0.50 U
See Notes at end of ta	able.								<u> </u>	, , , , ,	• • • •	14/7	, IVA	NA	19/1	0.50 0

Compound	FDEP GCTL ¹	FDEP NADSC ¹			JAX-	159-GH-29						J.	AX-159-GH-3	30		
			1/10/92	2/9/93	9/4/97	12/4/97	6/29/98	9/29/98	7/29/99	1/10/92	2/9/93	9/4/97	12/4/97	6/29/98	0/00/00	7/00/00
Volatile Organic Co	mpounds	(USEPA Me	thod 8021B)	(µa/L)					1720,00	1710/02	2/3/30	314131	12/4/97	0/29/98	9/29/98	7/29/99
Benzene	1	100	NA	NA.	NA	NA	NA	NA	47	NA	NA	NA	NA	NA	814	40.11
Toluene	40	400	NA	NA	NA	NA	NA	NA.	1.0 U	NA NA	NA	NA			NA	1.0 U
Ethylbenzene	30	300	NA	NA	NA	NA	NA.	NA	1.0 U	NA NA	NA NA	NA NA	NA	NA	NA	1.0 U
Total Xylenes	20	200	NA	NA	NA	NA.	NA	NA	1.0 U	NA NA	NA NA	NA NA	NA	NA	NA	1.0 U
MTBE	35	350	NA	NA	NA	NA	NA	NA	2.0 U	NA NA	NA	NA NA	NA NA	NA NA	NA NA	1.0 U 2.0 U
Polynuclear Aromat	lc Hydroc	arbons (US)	EPA Method	8310)(µg/L)	1											
1-Methylnaphthalene	20	NL	NA	NA NA	NA	NA	NA	NA	1.0 U	NA.	NA	NA	NA			
2-Methylnaphthalene	20	NL	NA	NA	NA	NA	NA.	NA.	1.0 U	NA NA	NA NA			NA	NA	2.3
Naphthalene	20	200	NA	NA	NA.	NA NA	NA	NA	0.50 U	1		NA	NA	NA	NA	1.0 U
						11/7	14/4	INA	U.0U_U	NA	NA	NA NA	NA	NA	NA	0.50 U

Compound	FDEP GCTL ¹	FDEP NADSC ¹				159-GH-31						J.	AX-159-GH-3	32		
V.1.111 0 1 0			1/10/92	2/9/93	9/4/97	12/4/97	6/29/98	9/29/98	7/29/99	1/10/92	2/9/93	9/4/97	12/4/97	6/29/98	9/29/98	9/2/99
Volatile Organic Cor	<u>mpounds</u>	(USEPA Me	thod 8021B)(ua/L)										0.00,00	0,20,00	0/2500
Benzene	1	100	NA	NA	NA	NA	NA	NA	1.0 U	NA	NA	NA	NA	NA	NA	1.0 U
Toluene	40	400	NA	NA	NA	NA	NA	NA	5.6	NA NA	NA	NA	NA NA	NA NA		
Ethylbenzene	30	300	NA	NA	NA	NA	NA	NA	1.8	NA	NA	NA			NA	1.2
Total Xvienes	20	200	NA	NA	NA	NA NA	NA	NA	11.7				NA	NA	NA	1.0 U
MTBE	35	350	NA.							NA	NA	NA	NA	NA	NA	1.0 U
WILDE	33	350	NA	NA	NA	NA	NA	NA	2.0 U	NA	NA	NA	NA	NA	NA	2.0 U
Polynuclear Aromat	ic Hydroc	arbons (US)	EPA Method	8310)(µg/L)												
1-Methylnaphthalene	20	NL	NA	NA	NA	NA	NA	NA	1.0 U	NA	NA	NA	NA	NA	NA	1.0 U
2-Methylnaphthalene	20	NL	NA	NA	NA	NA.	NA	NA.	1.0 U	NA NA	NA.	NA	NA NA	NA NA	NA NA	1.0 U
Naphthalene	20	200	NA	NA	NA	NA NA	NA	NA.	0.50 U	NA	NA NA	NA	NA NA	NA NA	NA NA	
See Notes at end of t	able.								0.00 0		14/3		. NA	NA	INA	0.50 U

Compound	FDEP GCTL ¹	FDEP NADSC ¹			JAX-1	159-GH-33						J.	AX-159-GH-3	34		
			1/10/92	2/9/93	9/4/97	12/4/97	6/29/98	9/29/98	9/2/99	1/10/92	2/9/93	9/4/97	12/4/97	6/29/98	9/29/98	9/2/99
Volatile Organic Cor	mpounds	(USEPA Me	thod 8021B)	(ua/L)							2,5,00	<u> </u>	124701	G/23/30	3/23/30	3/2/33
Benzene	1	100	NA	NA	NA	NA	NA	NA	1.0 U	NA NA	NA	NA	NA	NA	NA	1.0 U
Toluene	40	400	NA	NA	NA	NA	NA	NA	1.0 U	NA NA	NA.	NA.	NA.	NA NA	NA	1.0 U
Ethylbenzene	30	300	NA	NA	NA	NA	NA	NA	1.0 U	NA NA	NA.	NA	NA.	NA	NA.	1.0 U
Total Xylenes	20	200	NA	NA	NA	NA	NA	NA	1.0 U	NA NA	NA.	NA.	NA	NA	NA	1.0 U
MTBE	35	350	NA	NA	NA	NA	NA	NA	2.0 U	NA NA	NA	NA	NA	NA	NA	2.0 U
Polynuclear Aromat	tic Hydrod	arbons (US	EPA Method	8310)(µa/L)	l											
1-Methylnaphthalene	20	NL	NA	NA	NA	NA	NA	NA	1.0 U	NA NA	NA	NA	NA	NA	NA	1.0 U
2-Methylnaphthalene	20	NL	NA	NA	NA	NA	NA	NA	1.0 U	NA NA	NA.	NA.	NA	NA	NA NA	1.0 U
Naphthalene	20	200	NA_	NA NA	NA	NA	NA	NA	0.50 U	NA.	NA	NA	NA.	NA NA	NA NA	0.50 U

Compound	FDEP	FDEP			JAX-	159-GH-35						J	AX-159-GH-3	36		
	GCTL ¹	NADSC1	1/10/92	2/9/93	9/4/97	12/4/97	6/29/98	9/29/98	9/2/99	1/10/92	2/9/93	9/4/97	12/4/97	6/29/98	9/29/98	9/2/99
Volatile Organic Cor	npounds	(USEPA Met	thod 8021B)	(µq/L)						11.1979-		<u> </u>	12 101	G20/00	3/23/30	
Benzene	1	100	NA	NA	NA	NA	NA	NA	1.0 U	l na	NA	NA	NA	NA	NA	1.0 U
Toluene	40	400	NA	NA	NA	NA	NA	NA	4.0	NA NA	NA.	NA	NA.	NA	NA	1.0 0
Ethylbenzene	30	300	NA	NA	NA	NA	NA	NA	1.0 U	NA.	NA	NA	NA	NA.	NA	1.0 U
Total Xylenes	20	200	NA	NA	NA	NA	NA	NA	1.0 U	NA.	NA	NA	NA	NA.	NA.	1.0 U
MTBE	35	350	NA	NA	NA	NA	NA	NA	2.0 U	NA	NA	NA	NA	NA	NA	2.0 U
Polynuclear Aromat	ic Hydroc	arbons (USI	EPA Method	8310)(ua/L)												
1-Methylnaphthalene	20	NL	NA	NA	NA	NA	NA	NA	99	l na	NA	NA	NA	NA	NA	1.0 U
2-Methylnaphthalene	20	NL	NA	NA	NA	NA	NA	NA	62	NA.	NA	NA	NA	NA.	NA	1.0 U
Vaphthalene	20	200	NA	NA	NA	NA	NA	NA	5.0 U	NA.	NA	NA	NA	NA	NA	0.50 U

Compound	FDEP GCTL ¹	FDEP NADSC ¹	14000			159-GH-37						J	AX-159-GH-3	18		
Volatile Organio Co	mn oundo	AIGEDA M	1/10/92	2/9/93	9/4/97	12/4/97	6/29/98	9/29/98	9/2/99	1/10/92	2/9/93	9/4/97	12/4/97	6/29/98	9/29/98	9/3/99
Volatile Organic Co	IIDORIIGS		<u>(100 8021B) (</u>	ug/L)_											3/23/00	
Benzene	1	100	NA	NA	NA	NA	NA	NA	1.0 U	NA NA	NA	NA	NA			
Toluene	40	400	NA	NA	NA	NA	NA	NA.	1.0 U	NA.	NA			NA	NA	1.0 U
Ethylbenzene	30	300	NA	NA	NA	NA	NA.	NA.	1.0 U	NA NA	•	NA	NA	NA	NA	1.1
Total Xylenes	20	200	NA	NA	NA.	NA.	NA	NA			NA	NA	NA	NA	NA	1.0 U
MTBE	35	350	NA	NA	NA	NA NA			1.0 U	NA	NA	NA	NA	NA	NA	1.0 U
		300	14/1	INA	INA	INA	NA	NA	2.0 U	NA NA	NA	NA	NA	NA	NA	2.0 U
Polynuclear Aromat	ic Hydroc	arbons (USI	PA Method	8310)(ua/L)						ĺ						
1-Methylnaphthalene	20	NL	NA	NA.	NA	NA	NA	NA	1.0 U	NA NA						
2-Methylnaphthalene	20	NL	NA	NA	NA.	NA NA	NA	NA NA		1	NA	NA	NA	NA	NA	1.0 U
Naphthalene	20	200	NA NA	NA	NA				1.0 U	NA	NA	NA	NA	NA	NA	1.0 U
See Notes at end of t		230	14/	<u>IV/\</u>	INA	NA	NA	NA	0.50 U_	NA	NA_	NA	NA	NA	NA	0.50 U

SAR Addendum II Facility 159 (Gas Hill Fuel Farm) Naval Air Station Jacksonville Jacksonville, Florida

Compound	FDEP GCTL ¹	FDEP NADSC ¹			JAX-1	59-GH-39			
			1/10/92	2/9/93	9/4/97	12/4/97	6/29/98	9/29/98	9/3/99
Volatile Organic Compo	ounds (USE	PA Method	8021B){ua/L	.)				0,20,00	0/0/33
Benzene	1	100	NA	NA NA	NA	NA	NA	NA	3.2
Toluene	40	400	NA	NA	NA	NA	NA.	NA.	1.8
Ethylbenzene	30	300	NA	NA	NA	NA	NA.	NA.	1.0 U
Total Xylenes	20	200	NA	NA	NA	NA	NA.	NA.	1.0 U
MTBE	35	350	NA	NA	NA	NA	NA	NA	3.5
Polynuclear Aromatic I	lydrocarbor	ns (USEPA I	Method 8310)(µa/L)					
1-Methylnaphthalene	20	NL	NA	NA	NA	NA	NA	NA	1.0 U
2-Methylnaphthalene	20	NL	NA	NA	NA	NA.	NA	NA NA	1.0 U
Naphthalene	20	200	NA	NA.	NA NA	NA	NA	NA	0.50 U

¹Chapter 62-777, Florida Administrative Code (FAC) (August 5, 1999).

Notes: USEPA = U.S. Environmental Protection Agency.

FDEP = Florida Department of Environmental Protection.

GCTL = Groundwater Cleanup Target Level.

NADSC = Natural Attentuation Default Source Concentrations.

NL = not listed in Chapter 62-770, FAC.

μg/L = microgram per liter.

ND = none detected.

MTBE = methyl tert butyl ether.

NA = not analyzed.

BDL = below detection limit.

U = compound was not detected above the level shown

I = analyte detected; value is between the Method Detection Level (MDL) and the Practical

Quantitation Level (PQL)

Rev. 0 11/19/99

4.0 DISCUSSION

4.1 HISTORICAL SUMMARIES

The CAR (USACE, 1992) and the CAR Addendum (USACE, 1993) summarized the particular environmental conditions for Gas Hill Fuel Farm within the limits set by each investigation's scope of work. The CAR summarized Site conditions as follows:

- 1. Three aguifers exist under Gas Hill Fuel Farm the surficial, shallow rock, and the Floridan.
- 2. Unconsolidated, brown, fine-grained sands and silty sands exist under the Site to about 18 feet and are underlain by locally prevalent fat clay appeared to be several feet thick.
- 3. Groundwater was encountered at about 2 feet bls in the off site wells and the flow direction of the surficial aquifer appeared to be east toward the St. Johns River.
- 4. Free-floating product was found in a previously installed monitoring well (JAX-159-2) with a thickness of 0.3 feet.
- 5. VOA, PAH, and lead were detected in groundwater at the Site.
- 6. The vertical extent of contamination did not exceed 25 feet bls.
- 7. Potable wells identified during the investigation were more than 0.5 mile from the Site and upgradient.
- 8. Analyses of groundwater samples collected from monitoring wells downgradient of the Site only detected benzene at 4.9 μg/L in GH-8.

The addendum to the CAR summarized its data as follows:

- 1. Soil contamination exists outside the fenced area of Gas Hill Fuel Farm in two areas, both of which were considered extensions of contaminated areas inside the fence.
- 2. Groundwater contamination was encountered offsite near the southwestern corner of the fuel farm.
- A ditch on the northeast side of Gas Hill Fuel Farm occasionally received free product seeping from the Site especially during times of high rainfall, and sediment samples from that ditch indicated the presence of PAH.

The addendum to the CAR found that the lithology as described was incomplete and several cross-sections in the addendum showed that the clay layer was not as continuous as previously thought on the southeast side of Gas Hill Fuel Farm. Several preventive measures were adopted to address contamination at the Site. At a meeting held in May 1993 between the FDEP, the Navy, and the USACE, the initial recommendation from the CAR (1992) to prepare a RAP was changed to an interim Monitoring Only Plan (MOP) which would last about two years.

Eventually, the MOP was granted; however, monitoring well GH-14 (**Figure 1-2**) continued to show elevated levels of VOA. Since this well was furthest downgradient on the southeast side of the Site, two shallow wells (GH-24 and GH-26) and three deep wells (GH-23, GH-25 and GH-27) were installed in 1997 downgradient of GH-14 to track the plume both horizontally and vertically. Following installation and sampling of wells (GH-6 through GH-10, GH-13 through GH-17, GH-19, GH-20, and GH-22 through GH-27) at the Site, the horizontal extent of the plume was delineated. Samples from the following downgradient wells were reported free of petroleum hydrocarbons: GH-13, GH-22 and GH-26. As for the vertical extent wells, no hydrocarbons were detected in monitoring wells GH-25 and GH-27, which covered screened depth intervals of 35 to 40 feet bls and 30 to 35 feet bls, respectively. During sampling events in 1998, the benzene levels in GH-26 exceeded the GCTL (**Table 3-4**). The plume appeared to be moving downgradient (**TtNUS**, 1998b) in the vertical extent monitoring well GH-27, which began to show increases in the concentrations of benzene and other VOA. Although samples from GH-25 collected in June 1998 contained 1.2 µg/L of benzene, subsequent sampling events have indicated the interval from 35 to 40 feet bls is free of hydrocarbons.

4.2 SOIL DISCUSSION

Since the soil was delineated in the CAR and CAR Addendum (USACE, 1992 and 1993), the only soil assessment approached by this investigation involved screening the soils inside the Gas Hill Fuel Farm. Although the OVA-FID data for soils (**Table 2-1**) from borings associated with GH-35, GH-38 and GH-39 indicated excessively contaminated soils (corrected readings greater than 50 ppm for the Kerosene Analytical Group), the resultant laboratory analytical data show this data is not relevant (**Table 3-3**) in accordance with Chapter 62-770.200(12). The various concentrations of petroleum hydrocarbons and metals that were detected were less than the appropriate SCTL based on leachability to groundwater.

4.3 GROUNDWATER DISCUSSION

4.3.1 Water Table

Based on the last round of groundwater analytical data from July 1998, the first phase of this groundwater investigation included the installation of three water table wells (GH-29 through GH-31) to delineate the water table contaminant plume around the southeast corner of the Site. The analytical results (**Table 3-4**) for the first round of groundwater sampling (from early August 1999) indicated that additional wells would be necessary downgradient of GH-2, GH-22, and GH-29 to delineate the water table contaminant plume. **Figures 3-2 through 3-4** show the various chemical concentrations of concern for these three wells, and

the DPT micro-wells installed approximately 100 feet downgradient of them (GH-34, GH-33, and GH-32, respectively). **Table 3-4** indicates that the second round of analytical collected in early September 1999 reported no detectable hydrocarbons in samples from GH-32 through GH-34. So the water table plume appears to be delineated for the present.

Also, two of the micro-wells inside the Gas Hill Fuel Farm, GH-35 and GH-39 yielded contaminated samples, which exceeded GCTLs, as mentioned in Section 3.4.1. Although the semi-volatile compounds encountered in micro-well GH-35 may disperse below the water table, their concentrations in the shallow zone (near the source) are not significantly higher than GCTLs. Therefore, we do not anticipate concentrations exceeding GCTLs to be present at lower depths. Additionally, the geologic cross-section A to A' (USACE, 1993) indicates that a continuous clay layer exists across the northern part of the site, which would be coincident with the area of micro-well GH-35. The clay layer is drawn on the cross-section from approximately 5 to 20 feet bls, which would prevent deeper vertical migration. Thus contaminant migration associated with the plume around micro-well GH-35 would be confined mostly to the water table, which is currently delineated. Since only light non-aqueous phase liquids (LNAPL) were encountered in micro-well GH-39 and sufficient monitoring well coverage exists around the well, the LNAPL plume associated with it is considered delineated.

4.3.2 Deep Wells

The Quarterly Groundwater Monitoring Report (TtNUS, 1998b) recommended further delineation southeast of the Site in part because of the groundwater contamination encountered in samples from deep monitoring well GH-27. Based on the 1998 groundwater analytical data, monitoring well GH-28 was installed at the same depth interval (30 to 35 feet bls) and approximately 50 feet downgradient of deep monitoring well GH-27. Though the July 1999 groundwater sample from GH-27 contained 31 µg/L of benzene, the groundwater sample collected on the same day from GH-28 was reported to contain only 4.7 µg/L of total xylenes, which is below the GCTL of 20 µg/L for that compound (**Table 3-4**). This data indicate that the contamination at this 30 to 35-foot interval is delineated for the present, but the leading edge of the deep-zone contamination plume appears to have reached monitoring well GH-28 as evidenced by the 4.7 µg/L of total xylenes detected in its groundwater sample.

The deepest monitoring well in the same area as GH-27 is GH-25, and it covers a depth interval of 35 to 40 feet bls. The analytical data (**Table 3-4**) indicates that none of the chemicals of concern were detected in samples from GH-25. So, the vertical extent of contamination appears to be confined to the interval from the water table to no greater than 35 feet bls.

4.3.3 <u>Natural Attenuation</u>

The groundwater analytical data (**Table 3-4**) was compared to the FDEP's Natural Attenuation Default Source Concentration (NADSC) values from Chapter 62-777's Table V (FAC). The NADSC for benzene (100 μ g/L) was exceeded in the groundwater samples from water table monitoring wells GH-1 (130 μ g/L), GH-14 (270 μ g/L), and GH-15 (260 μ g/L). Also, the NADSC for total xylenes (200 μ g/L) was exceeded in the groundwater sample from water table monitoring well GH-2 (758 μ g/L). It appears that no other groundwater samples exceeded the NADSC values. **Figure 1-2** shows that monitoring wells GH-1, GH-2, GH-14 and GH-15 are situated consecutively in a line paralleling the gravel road on the southwest side of Gas Hill Fuel Farm. These wells are located within the delineated bounds of the benzene contaminant plume shown by **Figure 3-2**.

5.0 CONCLUSIONS AND RECOMMENDATION

The results of this investigation at Gas Hill Fuel Farm concluded that:

- 1. No potable wells were identified within a 0.5-mile radius of the Site, and the potable wells identified in the area appear to be upgradient of the Site.
- 2. The St. Johns River is about 2,000 feet downgradient of the Site.
- 3. Excessive soil contamination areas outside of the tank farm were delineated in previous reports.
- 4. The groundwater flows radially outward from Gas Hill Fuel Farm.
- 5. As a result of the drastic change in topography of the tank farm, the groundwater flow is radially outward off the site. Based on the CAR, the assumed regional groundwater flow near the site is easterly toward the St. Johns River, which is approximately 2,000 feet east of the site.
- 6. The area outside and southeast of Gas Hill Fuel Farm has an LNAPL contaminant plume that is presently delineated in the horizontal extent as shown by Figure 3-2 and 3-3. And, as indicated by Section 4.3.2, the vertical extent of the LNAPL plume has been delineated in that area. Additionally, the semi-volatile contamination in that same area (Figure 3-4) indicates concentrations below respective GCTL. In consideration of these items and the maximum depth of contamination in that area (35 feet bls), no further horizontal and vertical groundwater investigation is recommended in that area for the present.
- 7. The groundwater analytical from inside the Gas Hill Fuel Farm indicate that the semi-volatile contamination detected in micro-well GH-35 is delineated by the following: a combination of low PAH concentrations in relation to GCTLs, which should not impact the lower depths as the plume disperses; a shallow continuous clay layer in that area to prevent vertical migration; and, monitoring wells around it which have not shown similar chemicals of concern.
- 8. The LNAPL contamination at micro-well GH-39 is defined within the Tank Farm.
- 9. The review of FDEP NADSC guidelines indicate that the combination of soil impacts identified in the CAR Addendum (USACE, 1993) and the groundwater impacts which exceed guidelines along the southwest perimeter of the Site preclude consideration of a monitoring only program for Gas Hill Fuel Farm at this time.

In conclusion, TtNUS recommends preparation of a RAP to address the soil and groundwater impacts at Gas Hill Fuel Farm.

REFERENCES

Nuzie, E.S., 1992. Florida Department of Environmental Protection Letter Regarding Technical Review of the Contamination Assessment Report for Facility 159-Gas Hill Fuel Farm, December.

State of Florida, 1997. Florida Administrative Code Chapter 62-770: Petroleum Contamination Site Cleanup Criteria, September.

Tetra Tech NUS, Inc., 1998a. Comprehensive Quality Assurance Plan, FDEP COMPQAP PLAN # 980038 Rev. No. 1.

Tetra Tech NUS, Inc., 1998b. Groundwater Monitoring Report for Gas Hill Fuel Farm, Hawkin's 103rd and Tank 119, Naval Air Station Jacksonville, Jacksonville, Florida. Prepared for the Southern Division, Naval Facilities Engineering Command, North Charleston, South Carolina, December.

Tetra Tech NUS, Inc., 1999a. Contamination Assessment Plan for Gas Hill Fuel Farm, Naval Air Station Jacksonville, Jacksonville, Florida. Prepared for the Southern Division, Naval Facilities Engineering Command, North Charleston, South Carolina, May.

Tetra Tech NUS, Inc., 1999b. Facsimile between M. Dale (TtNUS) and D. Ford (Navy) regarding potable water well data update for Gas Hill Fuel Farm, Jacksonville, Florida, October.

Tetra Tech NUS, Inc., 1999c. Phone conversation between M. Dale (TtNUS) and B. Bunker (Navy) regarding storage tank status at Gas Hill Fuel Farm, Jacksonville, Florida, October.

U.S. Army Corps of Engineers, 1992. Contamination Assessment Report for Naval Air Station Jacksonville, Facility 159-Gas Hill Fuel Farm, Jacksonville, Florida (Draft). Prepared for the Southern Division, Naval Facilities Engineering Command, North Charleston, South Carolina, September.

U.S. Army Corps of Engineers, 1993. Addendum I to Contamination Assessment Report for Naval Air Station Jacksonville, Facility 159-Gas Hill Fuel Farm, Jacksonville, Florida. Prepared for the Southern Division, Naval Facilities Engineering Command, North Charleston, South Carolina, November.

APPENDIX A SOIL BORING LOGS

NO255. F60.050.225 OVA-FID LOG

Project Number: <u>N/ASJ-1SG-GH-35</u> Borm No. 4 Date 8/31/89

Project Location: NAS Jax / Gas Hill

Prepared by: E-Parker Sample Container G-lass Jan

Soil Boring	Sampling		Нус	lrocar	bon (Odor	OVA	\-FID Measure	ment
or Monitor Well ID No.	Depth (ft bls)	Lithologic Description	NONE	SLIGHT	MOD	STRONG	Unfiltered	Filtered	Net
Hari- Sel Above	0-2	Silty sand brown,	V				0		0
	2 -4	FG Silty Sand, nix 194+ brown & brown, dry	V				0		0
	4-6	FG Silty sand, Usht Brn, dry	L	-			0		0
	6-8	For silty send, white	V				0		0
	\$8-10	FGs silty	V				0		0
	10-12	-1	v				0		0
	12-14		ν				0		0
	14-16			/			190	85	105
	16 - 18	*				1	350	300	50
	18-20	weterst.	615.			V	990	425	565
	lay	e: Samples ta	har	-7	1	Hor	nd inter	val india	ded.
		/					0		
							Dulling	Tree BACK	med = Oppm
		Note: For litt	pho	n'c	desc	vip,	Am, see f	ald book	

NOZSS. FBD. 050.225 OVA-FID LOG

Well 10
Project Number: NASS-159-G-H-36 Borm No. 5 Date 8/3//89

Project Location: NAS Jax / Gas 14.11

Prepared by: C. Parker Sample Container Glass Jans

Soil Boring	Sampling		Нус	lrocar	bon (Odor	OVA	A-FID Measure	ement
or Monitor Well ID No.	Depth (ft bls)	Lithologic Description	NONE	SUGHT	MOD	STRONG	Unfiltered	Filtered	Net
above	0-2	See Fieldbook	V				0		0
	2-4		V				0		0
	4-6		V				0		0
	6-8			<u></u>			0		0
	8210		V				\circ		0
	10-12	-	c				٥		0
	12-14						0		0
	14-16						0		0
	16-18	WET @ 17.SFT.	v				ට		0
	1	Note; samples ;	AK	n a	+ L	o ther	nd inter	I indiae	kd.
							0		
		· · · · · · · · · · · · · · · · · · ·		-				·	
	1								
							Drillin	Area BACK	gund = Opp
		Note, for li	tho	lo n	c 4	lesc	rin to se	e field b	,oh.

Project Number: NASS-169-BH-37 Boring No. 6 Date 8/31/89

Project Location: NAS SAX/SAS \(\frac{1}{2}\)

Prepared by: £. Parker _______Sample Container _Glass Sar

Soil Boring	Sampling	Brief	Hyd	irocar	bon (Odor	OV	A-FID Measur	ement
or Monitor Well ID No.	Depth (ft bls)	Lithologic Description	NONE	SLIGHT	MOD	STRONG	Unfiltered	Filtered	Net
See	02	See Fieldbrok	V				0		0
·	2-4		V				0		0
	4-6		V				0	· · · · · · · · · · · · · · · · · · ·	0
	6-8		~				9		0
	8-10			_			0		0
	10-R	*	~				0		0
	12-13		V				υ		0
	13-14		V				10	9	1
	N tal	e: Samples take	n a	t	So-H	bm.	of interv	indicate	d.
						-	0		

							la ella	Anea has	Kand = Opp
		Note: For lithol	(n)	1	200	,, , , ,	500	I Id have	

NO 255. FBO. 050. 225 OVA-FID LOG

100 1.0. 2

Project Number: NASJ-159-C2H-38 Bormy NO. 8

Date <u>9/#/99</u>

Project Location: NAS Sax / Gas H. (1

Prepared by: 2. Park - Sample Container Glass Mason Jars

Soil Boring	Sampling		Нус	lrocar	bon (Odor	ov	A-FID Measure	ement
or Monitor Well ID No.	Depth (ft bls)	Lithologic Description	NONE	SLIGHT	MOD	STRONG	Unfiltered	Filtered	Net
see Above	0-2	See Fildborg	_				0		0
	2-4		v				0		0
	4-6		c	_			0		0
	6-8		v				20	19	,
	8-10		V				88	25	63
	10-12		V				300	251	49
	12-14	water table wet	i				995	600	395
		4.							
	N	re: samples taxon	ঝ	مط	Hon	ی ر	1 inter	el indire	ted.
							0		
					_				
						0 0 0 0 0 0			
							Drilling	Alua Brekgr	nd = Oppon

BORING LOG

Page __/ of __/

PROJECT NAME: GAS HILL, NAS JACKSHVILLBORING NUMBER: 8													
PROJECT NUMBER:			NO255. FBD. 050-225 DATE: GROWDWATEL PROTECTION GEOLOGIST			_ :	09/01/99 MERVINDALE						
DRILLING COMPANY:			GROWDWATLL PROTECTION GEOLOGIST			Ι:	MERVINDALE						
DRILLING RIG:					Geo.pro	be	DT-66DRILLER:		Charles Buc				
Sample No. and Type or RQD	(Ft.)	Blows / 6" or RQD (%)	Sample Recovery Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soli Density/ Consistency or Rock Hardness		FID reading Unfiltered Material Glassification	J W C W •	Remarks	Sample of A	Sampler BZ		Driller 82**
	1 2						0			0			0
	0-2 2-4			FOL			0			0			
	4-6			haho			6			O			
	6-8			Descar			50		٥	50			
	8-10			Descry			500		100	400			
				book			-50-			50			
	10-2			book			500		^	∞			
	12-14			(or			1000		200 8	∞			
	15			50			water Table	-					
				101									
				-									
				-									
				ŀ			*						\dashv
<u> </u>				ŀ			f iso	 					
				Ì									
				ļ									
								<u> </u>					
				1		•		<u> </u>				_	
								<u> </u>			<u> </u>		
				-		_	· · · · · · · · · · · · · · · · · · ·	<u> </u>		<u> </u>	_	-	
								-		 	-		\vdash
<u> </u>				}		_		-		-	-	\vdash	
1A0cor	mck cori	ing, enter m	ock brokene	ss.		1							
** Includ	** Unclude monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. **Remarks: **Drilling Area **Background (ppm):												
							Mo Mall I	D 44.	_				
Converted to Well: Yes V No Well I.D. #: NAST-159-GH-39													

APPENDIX B IDW ANALYTICAL DATA

Environmental Conservation Laboratories, Inc.

4810 Executive Park Court, Suite 211 Jacksonville, Florida 32216-6069 904 / 296-3007 Fax 904 / 296-6210 www.encolabs.com

DHRS Certification No. E82277

CLIENT : Tetra Tech NUS, Inc.

ADDRESS: 661 Anderson Dr.

Foster Plaza 7

Pittsburg, PA 15220-2745

REPORT #

: JR7909

DATE SUBMITTED: July 31, 1999

DATE REPORTED : August 19, 1999

PAGE 1 OF 10

ATTENTION: Ms. Lee Leck

SAMPLE IDENTIFICATION

Samples submitted and identified by client as:

PROJECT #: NO255/CTO101

NAS JAX Gas Hill

07/30/99

#1 - NASJ-159-GH-IDW-01 @ 12:19

PROJECT MANAGER

REPORT # : JR7909

DATE REPORTED: August 19, 1999 REFERENCE : NO255/CTO101 PROJECT NAME : NAS JAX Gas Hill

PAGE 2 OF 10

EPA METHOD 5035/8021 VOLATILE ORGANICS	-	NASJ-159-GH-IDW-01	Units
Methyl tert-butyl eth Benzene	ner	2.0 U D1 1.0 U D1	μg/Kg μg/Kg
Toluene	•	1.0 U D1	μg/Kg
Chlorobenzene		1.0 U D1	μg/Kg
Ethylbenzene		1.0 U D1	μg/Kg
m-Xylene & p-Xylene		2.0 U D1 1.0 U D1	μg/Kg · μg/Kg
o-Xylene 1,3-Dichlorobenzene		1.0 U D1	μg/Kg μg/Kg
1,4-Dichlorobenzene		1.0 U D1	μg/Kg μg/Kg
1,2-Dichlorobenzene		1.0 U D1	μg/Kg
Surrogate (Bromofluor Surrogate Expected Va Surrogate Reported Va Surrogate Percent Rec Surrogate Control Lin Date Analyzed	alue alue covery	50 45 90 28-165 08/03/99	μg/Kg μg/Kg % %
MISCELLANEOUS M	METHOD	NASJ-159-GH-IDW-01	<u>Units</u>
Percent Solids S Date Analyzed	SM2540G	79 08/01/99	%

U = Compound was analyzed for but not detected to the level shown. DW = Analysis is reported on a "dry weight" basis. D1 = Analyte value determined from a 1:1.02 dilution.

REPORT # : JR7909

DATE REPORTED: August 19, 1999 REFERENCE: NO255/CTO101 PROJECT NAME: NAS JAX Gas Hill

PAGE 3 OF 10

EPA METHOD 3550/8310 - PAH BY HPLC	NASJ-159-GH-IDW-01	<u>Units</u>
Naphthalene	21 U	μg/Kg
Acenaphthylene	42 U	μ g/Kg
1-Methylnaphthalene	42 U	μ g/Kg
2-Methylnaphthalene	42 U	μ g/Kg
Acenaphthene	21 U	μ g/Kg
Fluorene	6.7	μ g/Kg
Phenanthrene	42 U	μ g/Kg
Anthracene	2.0 U	μ g/Kg
Fluoranthene	4.2 U	μg/Kg
Pyrene	2.1 U	μg/Kg
Benzo(a)anthracene	2.1 U	μ g/Kg
Chrysene	2.1 U	μg/Kg
Benzo(b)fluoranthene	4.0 U	μ g/Kg
Benzo(k)fluoranthene	2.0 U	μg/Kg
Benzo(a)pyrene	2.0 U	μ g/Kg
Dibenzo(a,h)anthracene	4.2 U	μg/Kg
Benzo(g,h,i)perylene	4.2 U	μg/Kg
Indeno(1,2,3-cd)pyrene	2.1 U	μg/Kg
Surrogate (p-terphenyl)		,
Surrogate Expected Value	330	μg/Kg
Surrogate Reported Value	333	µg/Kg
Surrogate Percent Recovery	101	%
Surrogate Control Limit	50-146	%
Date Extracted	08/04/99	
Date Analyzed	08/09/99	

 $^{{\}tt U}={\tt Compound}$ was analyzed for but not detected to the level shown. ${\tt DW}={\tt Analysis}$ is reported on a "dry weight" basis.

REPORT # : JR7909

DATE REPORTED: August 19, 1999 **REFERENCE**: NO255/CTO101 PROJECT NAME : NAS JAX Gas Hill

PAGE 4 OF 10

TOTAL METALS	<u>METHOD</u>	NASJ-159-GH-IDW-01	<u>Units</u>
Arsenic Date Analyzed	3050/6010	0.60 I 08/03/99	mg/Kg
Barium Date Analyzed	3050/6010	25 U 08/03/99	mg/Kg
Cadmium Date Analyzed	3050/6010	1.0 U 08/03/99	mg/Kg
Chromium Date Analyzed	3050/6010	6.7 08/03/99	mg/Kg
Lead Date Analyzed	3050/6010	4.3 08/03/99	mg/Kg
Mercury Date Analyzed	7471	0.023 V 08/06/99	mg/Kg
Selenium Date Analyzed	3050/6010	2.0 U 08/03/99	mg/Kg
Silver Date Analyzed	3050/6010	2.0 U 08/03/99	mg/Kg

V = Analyte detected in associated preparatory blank. U = Compound was analyzed for but not detected to the level shown.

I = Analyte detected; value is between the Method Detection Level (MDL) and the Practical Quantitation Level (PQL). DW = Analysis is reported on a "dry weight" basis.

REPORT # : JR7909

DATE REPORTED: August 19, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 5 OF 10

PETROL. RESIDUAL ORG.	NASJ-159-GH-IDW-01	<u>Units</u>
Hydrocarbons (C8-C40)	8.4 U	mg/Kg
Surrogate (-Terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limit Date Extracted Date Analyzed	1.65 1.44 87 51-148 08/02/99 08/03/99	μg/Kg μg/Kg %

U = Compound was analyzed for but not detected to the level shown. DW = Analysis is reported on a "dry weight" basis.

REPORT # : JR7909

DATE REPORTED: August 19, 1999 REFERENCE: NO255/CTO101 PROJECT NAME: NAS JAX Gas Hill

PAGE 6 OF 10

EPA METHOD 5035/8021 ~ VOLATILE ORGANICS	LAB BLANK	<u>Units</u>
Methyl tert-butyl ether Benzene Toluene	2.0 U 1.0 U 1.0 U	μg/Kg μg/Kg μg/Kg
Chlorobenzene Ethylbenzene	1.0 U 1.0 U	μg/Kg μg/Kg
<pre>m-Xylene & p-Xylene o-Xylene 1,3-Dichlorobenzene</pre>	2.0 U 1.0 U 1.0 U	μg/Kg μg/Kg μg/Kg
1,4-Dichlorobenzene 1,2-Dichlorobenzene	1.0 U 1.0 U	μg/Kg μg/Kg μg/Kg
Surrogate (Bromofluorobenzene)	1.0	#9/ K9
Surrogate Expected Value	50	mg/Kg
Surrogate Reported Value Surrogate Percent Recovery	47 94	mg/Kg %
Surrogate Control Limits Date Analyzed	28-165 08/03/99	%

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR7909

DATE REPORTED: August 19, 1999 REFERENCE: NO255/CTO101 PROJECT NAME: NAS JAX Gas Hill

PAGE 7 OF 10

EPA METHOD 3550/8310 - PAH BY HPLC	LAB BLANK	<u>Units</u>
Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene	17 U 33 U 33 U 33 U 17 U 3.3 U 3.3 U 2.0 U 3.3 U 1.7 U 1.7 U 1.7 U 2.0 U 2.0 U 2.0 U 3.3 U 1.7 U	μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg
Indeno(1,2,3-cd) pyrene Surrogate (p-terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limit Date Extracted Date Analyzed	330 300 91 50-146 08/04/99 08/09/99	μg/Kg μg/Kg μg/Kg %

REPORT # : JR7909

DATE REPORTED: August 19, 1999 REFERENCE : NO255/CTO101 PROJECT NAME : NAS JAX Gas Hill

PAGE 8 OF 10

TOTAL METALS	METHOD	LAB BLANK	<u>Units</u>
Arsenic Date Analyzed	3050/6010	0.50 U 08/03/99	mg/Kg
Barium Date Analyzed	3050/6010	20 U 08/03/99	mg/Kg
Cadmium Date Analyzed	3050/6010	1.0 U 08/03/99	mg/Kg
Chromium Date Analyzed	3050/6010	1.0 U 08/03/99	mg/Kg
Lead Date Analyzed	3050/6010	1.0 U 08/03/99	mg/Kg
Mercury Date Analyzed	7471	0.012 I 08/06/99	mg/Kg
Selenium Date Analyzed	3050/6010	2.0 U 08/03/99	mg/Kg
Silver Date Analyzed	3050/6010	2.0 U 08/03/99	mg/Kg

REPORT # : JR7909

DATE REPORTED: August 19, 1999
REFERENCE : NO255/CTO101
PROJECT NAME : NAS JAX Gas Hill

PAGE 9 OF 10

EPA METHOD 3550/FLPRO - PETROL. RESIDUAL ORG.	LAB BLANK	<u>Units</u>
Hydrocarbons (C8-C40)	6.6 U	mg/Kg
Surrogate (o-Terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limit Date Extracted Date Analyzed	1.65 1.02 62 51-148 08/02/99 08/02/99	mg/Kg mg/Kg %

REPORT # : JR7909

DATE REPORTED: August 19, 1999
REFERENCE : NO255/CTO101
PROJECT NAME : NAS JAX Gas Hill

PAGE 10 OF 10

QUALITY CONTROL DATA

	% RECOVERY	LCS TARGET	ACCEPT	% RPD	ACCEPT
<u>Parameter</u>	MS/MSD/LCS	μ g/kg	<u>LIMITS</u>	<u>ms/msd</u>	<u>LIMITS</u>
EPA Method 5035/8021 Benzene Toluene Ethylbenzene o-Xylene	79/ 81/ 74 #62/ 61/ 68 69/ 72/ 79 76/ 79/ 90	20 20 20 20	59-144 67-132 60-169 62-183	2 2 4 4	25 58 28 24
EPA Method 3550/8310 Naphthalene Acenaphthene Benzo(a)pyrene Benzo(g,h,i)perylene	95/ 85/ 65 96/ 89/ 77 95/ 97/ 95 94/ 95/ 95	330 330 33 66	26-125 20-143 42-138 51-142	11 8 2 1	45 35 38 26
Total Metals Arsenic, 3050/6010 Barium, 3050/6010 Cadmium, 3050/6010 Chromium, 3050/6010 Lead, 3050/6010 Mercury, 7471 Selenium, 3050/6010 Silver, 3050/6010	88/ 87/100 90/ 91/ 99 90/ 90/ 99 90/ 91/ 98 91/ 91/100 74/ 77/ 89 87/ 86/ 96 70/ 70/ 76	50 50 25 50 50 0.25 50	53-153 70-120 59-130 57-135 63-128 71-138 60-121 69-118	1 1 <1 1 <1 4 1 <1	22 16 24 24 26 13 14
PETROL. RESIDUAL ORG. (1997) Hydrocarbons (C8-C40)	85/ 80/110	56.1	62-204	6	25

NOTE: RCRA8 Metals and LCS FLPRO target units are mg/kg Environmental Conservation Laboratories Comprehensive QA Plan #960038

This report shall not be reproduced except in full, without the written approval of the laboratory. Results for these procedures apply only to the samples as submitted.

^{# =} The associated value failed to meet laboratory established criteria for precision.

< = Less Than

MS = Matrix Spike

MSD = Matrix Spike Duplicate

LCS = Laboratory Control Standard RPD = Relative Percent Difference

ENCO Labs JR7909 MDL Report Page 1 of 1

								Р	age 1 of 1
sample_no	run_number	parameter	method	units	idl	mdl			pct_moist
NASJ-159-GH-IDW-01	1	Silver	3050/6010	mg/Kg	0.05		2	1	21
NASJ-159-GH-IDW-01	1	Arsenic	3050/6010	mg/Kg	0.4		0.6	1	21
NASJ-159-GH-IDW-01	1	Barium	3050/6010	mg/Kg	0.1		25	1	21
NASJ-159-GH-IDW-01	1	Cadmium	3050/6010	mg/Kg	0.05		1	1	21
NASJ-159-GH-IDW-01	1	Chromium	3050/6010	mg/Kg	0.15		1	1	21
NASJ-159-GH-IDW-01	1	Lead	3050/6010	mg/Kg	0.15		1	1	21
NASJ-159-GH-IDW-01	1	Selenium	3050/6010	mg/Kg	0.2		2	1	21
NASJ-159-GH-IDW-01	1	Mercury	7 4 71	mg/Kg	0.004		0.01	1	21
NASJ-159-GH-IDW-01	1 .	Naphthalene	3550/8310	ug/Kg		8.5	21	1	21
NASJ-159-GH-IDW-01	1	Acenaphthylene	3550/8310	ug/Kg		4.2	42	1	21
NASJ-159-GH-IDW-01	1	1-Methylnaphthalene	3550/8310	ug/Kg		4.2	42	1	21
NASJ-159-GH-IDW-01	1	2-Methylnaphthalene	3550/8310	ug/Kg		8.5	42	1	21
NASJ-159-GH-IDW-01	1	Acenaphthene	3550/8310	ug/Kg		8.5	21	1	21
NASJ-159-GH-IDW-01	1	Fluorene	3550/8310	ug/Kg		1.7	4.2	1	21
NASJ-159-GH-IDW-01	1	Phenanthrene	3550/8310	ug/Kg		1.7	42	1	21
NASJ-159-GH-IDW-01	1	Anthracene	3550/8310	ug/Kg		1	2	1	21
NASJ-159-GH-IDW-01	1	Fluoranthene	3550/8310	ug/Kg		1.7	4.2	1	21
NASJ-159-GH-IDW-01	1	Pyrene	3550/8310	ug/Kg		1.7	2.1	1	21
NASJ-159-GH-IDW-01	1	Benzo(a)anthracene	3550/8310	ug/Kg		0.85	2.1	1	21
NASJ-159-GH-IDW-01	1	Chrysene	3550/8310	ug/Kg		0.85	2.1	1	21
NASJ-159-GH-IDW-01	1	Benzo(b)fluoranthene	3550/8310	ug/Kg		2	4	1	21
NASJ-159-GH-IDW-01	1	Benzo(k)fluoranthene	3550/8310	ug/Kg		1	2	1	21
NASJ-159-GH-IDW-01	1	Benzo(a)pyrene	3550/8310	ug/Kg		1	2	1	, 21
NASJ-159-GH-IDW-01	1	Dibenzo(a,h)anthracene	3550/8310	ug/Kg		3	4.2	1	21
NASJ-159-GH-IDW-01	1 ~	Benzo(g,h,i)perylene	3550/8310	ug/Kg		3	4.2	1	21
NASJ-159-GH-IDW-01	1	Indeno(1,2,3-cd)pyrene	3550/8310	ug/Kg		0.85	2.1	1	21
NASJ-159-GH-IDW-01	1	P-Terphenyl	3550/8310	%				1	
NASJ-159-GH-IDW-01	1	Hydrocarbons (C8-C40)	3550/FLPRO	mg/Kg		8.4	8.4	1	21
NASJ-159-GH-IDW-01	1	o-Terphenyl	3550/FLPRO	%				1	
NASJ-159-GH-IDW-01	1	Methyl tert-butyl ether	5035/8021	ug/Kg		2	2	1.02	21
NASJ-159-GH-IDW-01	1	Benzene	5035/8021	ug/Kg		1	1	1.02	21
NASJ-159-GH-IDW-01	1	Toluene	5035/8021	ug/Kg		1.1	1	1.02	21
NASJ-159-GH-IDW-01	1	Chlorobenzene	5035/8021	ug/Kg		1.1	. 1	1.02	21
NASJ-159-GH-IDW-01	1	Ethylbenzene	5035/8021	ug/Kg		1.1	1	1.02	21
NASJ-159-GH-IDW-01	1	m-Xylene & p-Xylene	5035/8021	ug/Kg		2	2	1.02	21
NASJ-159-GH-IDW-01	1	o-Xylene	5035/8021	ug/Kg	•	1.	1	1.02	21
NASJ-159-GH-IDW-01	1	1,3-Dichlorobenzene	5035/8021	ug/Kg		1	1	1.02	21
NASJ-159-GH-IDW-01	. 1	1,4-Dichlorobenzene	5035/8021	ug/Kg		1	1	1.02	21
NASJ-159-GH-IDW-01	1	1,2-Dichlorobenzene	5035/8021	ug/Kg		1	1	1.02	21
NASJ-159-GH-IDW-01	1	Bromofluorobenzene	5035/8021	%				1.02	

QSARF #	SARF #	_
---------	--------	---

ENVIRONMENTAL CONSERVATION LABORATORIES

4810 Executive Park Court, Suite 211 Jacksonville, Florida 32216-6069

10207 General Drive Orlando, Florida 32824

Ph. (904) 296-3007 • Fax (904) 296-6210

Ph. (407) 826-5314 • Fax (407) 850-6945

ENCO CompQAP No.: 960038G/0 CHAIN OF CUSTODY RECORD PROJECT NO. P.O. NUMBER NO255 OF MATRIX TYPE REQUIRED ANALYSIS STANDARD REPORT DELIVERY CLIENT PROJECT MANAGER MERVIN DAIR EXPEDITED REPORT DELIVERY (surcharge) FL 32256 JACKSONIUL. Stubage OTHER STATION GRAB COMP SAMPLE IDENTIFICATION NUMBER OF CONTAINERS SUBMITTED REMARKS 073099 1219 X MSJ-159-GH-IDW+011 coc # 03945 SORIB = VOA'S, BTEX 11 12 13 SAMPLE KIT PREPARED BY: DATE DATE RECEIVED BY: (SIGNATURE) DATE TIME JACKSONVILLE BEINOVISHED BY: (SIGNATURE) ECEIVED BY: (SIGNATURE) DATE TIME RELINQUISHED BY: (SIGNATURE) DATE TIME 7/3459 1811 RECEIVED BY (SIGNATURE) RELINQUISHED BY: (SIGNATURE) TIME RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED FOR LABORATORY BY: (SIGNATURE) CUSTODY INTACT ENCO LOG NO. REMARKS

Environmental Conservation Laboratories, Inc.

4810 Executive Park Court, Suite 211 Jacksonville, Florida 32216-6069 904 / 296-3007 Fax 904 / 296-6210 www.encolabs.com

DHRS Certification No. E82277

CASE NARRATIVE

Date:

August 19, 1999

Client:

Tetra Tech NUS, Inc.

Project #:

N0255 / CTO101

Lab ID:

JR7909

Overview

All samples submitted were analyzed by Environmental Conservation Laboratories, Inc. in accordance with the methods referenced in the laboratory report. Any particular difficulties encountered during sample handling by Environmental Conservation Laboratories, Inc. will be discussed in the QC Remarks section below.

One solid sample was received on July 31, 1999 in good condition on wet ice. No discrepancies were noted between the Chain of Custody and the containers. Samples were analyzed for the parameters as listed on the Chain of Custody.

All samples were extracted and analyzed within method-specified holding times.

Quality Control Remarks

In the 8021 analyses, the MS and MSD recoveries for toluene were low, outside of established limits. Per the analytical method, the data was validated as acceptable based on the LCS recoveries. Additionally, the RPD between the MS and MSD was within acceptance limits.

In the mercury analysis, a positive result was obtained in the preparatory blank. All associated samples were far below Florida regulatory levels. As such, the data was "V" flagged per the Florida Department of Environmental Protection requirements and released without further qualification.

Other Comments

Quality assurance acceptance limits for surrogates, matrix spikes, matrix spike duplicates and laboratory control limits are established in-house based on historical data.

The analytical data presented in this report are consistent with the methods as referenced in the analytical report. Any exceptions or deviations are noted in the QC remarks section of this narrative. Should there be any questions regarding this package, please feel free to contact the undersigned for additional information.

Released By:

Environmental Conservation Laboratories, Inc.

Richard E. Camp,

Laboratory Manager

APPENDIX C DISPOSAL MANIFEST

APPENDIX D SOIL ANALYTICAL DATA

Environmental Conservation Laboratories, Inc.

4810 Executive Park Court, Suite 211 Jacksonville, Florida 32216-6069 904 / 296-3007 Fax 904 / 296-6210 www.encolabs.com

DHRS Certification No. E82277

CLIENT : Tetra Tech NUS, Inc.

ADDRESS: 661 Anderson Dr.

Foster Plaza 7

Pittsburg, PA 15220-2745

REPORT #

: JR8358

DATE SUBMITTED: September 1, 1999

DATE REPORTED : September 28, 1999

PAGE 1 OF 26

ATTENTION: Ms. Lee Leck

SAMPLE IDENTIFICATION

Samples submitted and identified by client as:

PROJECT #: NO255.F30.050.225

Gas Hill

#1	-	NASJ-159-GH-35-16	@	12:15	(08/31/99)
#2	-	NASJ-159-GH-36-4	@	14:20	(08/31/99)
#3	-	NASJ-159-GH-37-4	@	15:10	(08/31/99)
#4	-	NASJ-159-GH-38-14	@	08:10	(09/01/99)
#5	-	NASJ-159-GH-39-14	@	09:20	(09/01/99)

PROJECT MANAGER

REPORT # : JR8358

DATE REPORTED: September 28, 1999
REFERENCE: NO255.F30.050.225

PROJECT NAME : Gas Hill

PAGE 2 OF 26

EPA METHOD 5035/802 VOLATILE ORGANICS	21 -	NASJ-159-GH-35-16	<u>Units</u>
Methyl tert-butyl e Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene		2.0 U 1.1 U 1.1 U 1.1 U 1.1 U 2.0 U 1.1 U 1.1 U 1.1 U	μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg
Surrogate (Bromoflu Surrogate Expected Surrogate Reported Surrogate Percent F Surrogate Control I Date Analyzed	Value Value Recovery	50 57 114 28-165 09/06/99	μg/Kg μg/Kg % %
MISCELLANEOUS	<u>METHOD</u>	NASJ-159-GH-35-16	<u>Units</u>
Percent Solids Date Analyzed	SM2540G	83 09/07/99	%

U = Compound was analyzed for but not detected to the level shown. DW = Analysis is reported on a "dry weight" basis.

REPORT # : JR8358

DATE REPORTED: September 28, 1999
REFERENCE: NO255.F30.050.225

PROJECT NAME : Gas Hill

PAGE 3 OF 26

EPA METHOD 3550/8310 - PAH BY HPLC	NASJ-159-GH-35-16	<u>Units</u>
• •	20 U	μg/Kg
Naphthalene Acenaphthylene	40 U	μg/Kg μg/Kg
1-Methylnaphthalene	41	μg/Kg μg/Kg
2-Methylnaphthalene	44	μg/Kg
Acenaphthene	20 U	μg/Kg
Fluorene	4.0 U	μg/Kg
Phenanthrene	40 U	μg/Kg
Anthracene	2.0 U	μg/Kg
Fluoranthene	4.0 U	μg/Kg
Pyrene	2.0 U	μg/Kg
Benzo(a) anthracene	2.0 U	μg/Kg
Chrysene	2.0 U	μg/Kg
Benzo(b) fluoranthene	4.0 U	μg/Kg
Benzo(k)fluoranthene	2.0 U	μg/Kg
Benzo(a)pyrene	2.0 U	μg/Kg
Dibenzo(a,h)anthracene	4.0 U	μg/Kg
Benzo(g,h,i)perylene	4.0 U	μ g/Kg
Indeno(1,2,3-cd)pyrene	2.0 U	μg/Kg
Surrogate (p-terphenyl)		
Surrogate Expected Value	330	μg/Kg
Surrogate Reported Value	337	μg/Kg
Surrogate Percent Recovery	102	%
Surrogate Control Limit	50-146	%
Date Extracted	09/04/99	
Date Analyzed	09/08/99	

U = Compound was analyzed for but not detected to the level shown. DW = Analysis is reported on a "dry weight" basis.

REPORT # : JR8358

DATE REPORTED: September 28, 1999
REFERENCE: NO255.F30.050.225

PROJECT NAME : Gas Hill

PAGE 4 OF 26

TOTAL METALS	METHOD	NASJ-159-GH-35-16	<u>Units</u>
Arsenic Date Analyzed	3050/6010	0.60 U 09/03/99	mg/Kg
Barium Date Analyzed	3050/6010	24 U 09/03/99	mg/Kg
Cadmium Date Analyzed	3050/6010	1.0 U 09/03/99	mg/Kg
Chromium Date Analyzed	3050/6010	2.0 09/03/99	mg/Kg
Lead Date Analyzed	3050/6010	1.0 U 09/03/99	mg/Kg
Mercury Date Analyzed	7471	0.010 U 09/04/99	mg/Kg
Selenium Date Analyzed	3050/6010	2.0 U 09/03/99	mg/Kg
Silver Date Analyzed	3050/6010	2.0 U 09/03/99	mg/Kg

U = Compound was analyzed for but not detected to the level shown. DW = Analysis is reported on a "dry weight" basis.

REPORT # : JR8358

DATE REPORTED: September 28, 1999 REFERENCE: NO255.F30.050.225

PROJECT NAME : Gas Hill

PAGE 5 OF 26

EPA METHOD FLPRO - PETROL. RESIDUAL ORG.	NASJ-159-GH-35-16	Units
Hydrocarbons (C8-C40)	8.0 U	mg/Kg
Surrogate (o-Terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limit Date Extracted Date Analyzed	1.65 1.25 76 51-145 09/02/99 09/07/99	mg/Kg mg/Kg % %

U = Compound was analyzed for but not detected to the level shown. DW = Analysis is reported on a "dry weight" basis.

REPORT # : JR8358

DATE REPORTED: September 28, 1999 REFERENCE: NO255.F30.050.225

PROJECT NAME : Gas Hill

PAGE 6 OF 26

09/07/99

RESULTS OF ANALYSIS

VOLATILE ORGANICS	, 	NASJ-159-GH-36-4	<u>Units</u>
Methyl tert-butyl Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xyler o-Xylene 1,3-Dichlorobenzer 1,4-Dichlorobenzer 1,2-Dichlorobenzer	ie ie	2.0 U D1 1.2 U D1 1.2 U D1 1.2 U D1 1.2 U D1 2.0 U D1 1.0 U D1 1.0 U D1 1.0 U D1 1.0 U D1	μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg
Surrogate (Bromofl Surrogate Expected Surrogate Reported Surrogate Percent Surrogate Control Date Analyzed	uorobenzene) Value Value Recovery	50 45 90 28-165 09/06/99	μg/Kg μg/Kg μg/Kg %
MISCELLANEOUS	METHOD	NASJ-159-GH-36-4	<u>Units</u>
Percent Solids	SM2540G	90	ે

EPA METHOD 5035/8021 -

Date Analyzed

U = Compound was analyzed for but not detected to the level shown. DW = Analysis is reported on a "dry weight" basis.

D1 = Analyte value determined from a 1:1.14 dilution.

REPORT # : JR8358

DATE REPORTED: September 28, 1999 REFERENCE: NO255.F30.050.225

PROJECT NAME : Gas Hill

PAGE 7 OF 26

EPA METHOD 3550/8310 - PAH BY HPLC	NASJ-159-GH-36-4	Units
Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Benzo(g, h, i) perylene	19 U 37 U 37 U 37 U 19 U 3.7 U 3.7 U 2.0 U 3.7 U 1.9 U 1.9 U 1.9 U 2.0 U 2.0 U 2.0 U 2.0 U 3.7 U	μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg
Indeno(1,2,3-cd)pyrene Surrogate (p-terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limit Date Extracted Date Analyzed	1.9 U 330 323 98 50-146 09/04/99 09/08/99	μg/Kg μg/Kg μg/Kg %

 $^{{\}tt U}={\tt Compound}$ was analyzed for but not detected to the level shown. ${\tt DW}={\tt Analysis}$ is reported on a "dry weight" basis.

REPORT # : JR8358

DATE REPORTED: September 28, 1999
REFERENCE: NO255.F30.050.225
PROJECT NAME: Gas Hill

PAGE 8 OF 26

TOTAL METALS	METHOD	NASJ-159-GH-36-4	<u>Units</u>
Arsenic Date Analyzed	3050/6010	0.60 U 09/03/99	mg/Kg
Barium Date Analyzed	3050/6010	22 U 09/03/99	mg/Kg
Cadmium Date Analyzed	3050/6010	1.0 U 09/03/99	mg/Kg
Chromium Date Analyzed	3050/6010	1.6 09/03/99	mg/Kg
Lead Date Analyzed	3050/6010	2.9 09/03/99	mg/Kg
Mercury Date Analyzed	7471	0.010 U 09/04/99	mg/Kg
Selenium Date Analyzed	3050/6010	2.0 U 09/03/99	mg/Kg
Silver Date Analyzed	3050/6010	2.0 U 09/03/99	mg/Kg

U = Compound was analyzed for but not detected to the level shown. DW = Analysis is reported on a "dry weight" basis.

REPORT # : JR8358

DATE REPORTED: September 28, 1999
REFERENCE: NO255.F30.050.225

PROJECT NAME : Gas Hill

PAGE 9 OF 26

EPA METHOD FLPRO - PETROL. RESIDUAL ORG.	NASJ-159-GH-36-4	<u>Units</u>
Hydrocarbons (C8-C40)	7.3 U	mg/Kg
Surrogate (o-Terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limit Date Extracted Date Analyzed	1.65 1.04 63 51-145 09/02/99 09/07/99	mg/Kg mg/Kg %

U = Compound was analyzed for but not detected to the level shown. DW = Analysis is reported on a "dry weight" basis.

REPORT # : JR8358

DATE REPORTED: September 28, 1999
REFERENCE: NO255.F30.050.225

PROJECT NAME : Gas Hill

PAGE 10 OF 26

EPA METHOD 5035/80	021 -		•	
VOLATILE ORGANICS		<u>NASJ-159-GH</u>	<u>I - 37 - 4</u>	$\underline{\mathtt{Units}}$
Methyl tert-butyl	ether	2.0 U	D2	μg/Kg
Benzene		1.0 U	· · · · · · · · · · · · · · · · · · ·	μg/Kg
Toluene		1.0 U	D2	μg/Kg
Chlorobenzene		1.0 U	D2	μg/Kg
Ethylbenzene		1.0 U	D2	μg/Kg
m-Xylene & p-Xylen	ne	2.0 U		μg/Kg
o-Xylene		1.0 U		μ g/Kg
1,3-Dichlorobenzer		1.0 U		μ g/Kg
1,4-Dichlorobenzer		1.0 U		μ g/Kg
1,2-Dichlorobenzer	ne	1.0 U	D2	μg/Kg
Surrogate (Bromof.	luorobenzene)			
Surrogate Expected	d Value	50		μg/Kg
Surrogate Reported	d Value	46		μg/Kg
Surrogate Percent		92		%
Surrogate Control	Limits	28-165		%
Date Analyzed		09/06/99		
MISCELLANEOUS	METHOD	NASJ-159-GH	<u> 1-37-4</u>	<u>Units</u>
Percent Solids	SM2540G	79 09/07/9	0.0	%
Date Analyzed		09/07/9	י די	

U = Compound was analyzed for but not detected to the level shown.

DW = Analysis is reported on a "dry weight" basis.
D2 = Analyte value determined from a 1:1.05 dilution.

REPORT # : JR8358

DATE REPORTED: September 28, 1999 REFERENCE: NO255.F30.050.225

PROJECT NAME : Gas Hill

PAGE 11 OF 26

EPA METHOD 3550/8310 - PAH BY HPLC	NASJ-159-GH-37-4	<u>Units</u>
Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene	21 U 42 U 42 U 42 U	μg/Kg μg/Kg μg/Kg μg/Kg
Acenaphthene Fluorene Phenanthrene Anthracene	21 U 4.2 U 42 U 2.0 U	μg/Kg μg/Kg μg/Kg μg/Kg
Fluoranthene Pyrene Benzo(a)anthracene	5.0 I 5.4 I 2.1 U	μg/Kg μg/Kg μg/Kg
Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene	4.2 6.0 I 2.0 I 8.0	μg/Kg μg/Kg μg/Kg μg/Kg
Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene	12 12 5.4	μg/Kg μg/Kg μg/Kg
Surrogate (p-terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery	330 307 93	μg/Kg μg/Kg %
Surrogate Fercent Recovery Surrogate Control Limit Date Extracted Date Analyzed	50-146 09/04/99 09/08/99	90

U = Compound was analyzed for but not detected to the level shown.

I = Analyte detected; value is between the Method Detection Level (MDL)
 and the Practical Quantitation Level (PQL).

DW = Analysis is reported on a "dry weight" basis.

REPORT # : JR8358

DATE REPORTED: September 28, 1999 REFERENCE : NO255.F30.050.225 PROJECT NAME : Gas Hill

PAGE 12 OF 26

TOTAL METALS	<u>METHOD</u>	NASJ-159-GH-37-4	<u>Units</u>
Arsenic Date Analyzed	3050/6010	0.60 U 09/03/99	mg/Kg
Barium Date Analyzed	3050/6010	25 U 09/03/99	mg/Kg
Cadmium Date Analyzed	3050/6010	1.0 U 09/03/99	mg/Kg
Chromium Date Analyzed	3050/6010	1.0 U 09/03/99	mg/Kg
Lead Date Analyzed	3050/6010	1.5 09/03/99	mg/Kg
Mercury Date Analyzed	7471	0.010 U 09/04/99	mg/Kg
Selenium Date Analyzed	3050/6010	2.0 U 09/03/99	mg/Kg
Silver Date Analyzed	3050/6010	2.0 U 09/03/99	mg/Kg

 $^{{\}tt U}={\tt Compound}$ was analyzed for but not detected to the level shown. DW = Analysis is reported on a "dry weight" basis.

REPORT # : JR8358

DATE REPORTED: September 28, 1999 REFERENCE: NO255.F30.050.225

PROJECT NAME : Gas Hill

PAGE 13 OF 26

EPA METHOD FLPRO - PETROL. RESIDUAL ORG.	NASJ-159-GH-37-4	<u>Units</u>
Hydrocarbons (C8-C40)	8.4 U	mg/Kg
Surrogate (o-Terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limit Date Extracted Date Analyzed	1.65 1.14 69 51-145 09/02/99 09/07/99	mg/Kg mg/Kg %

U = Compound was analyzed for but not detected to the level shown. DW = Analysis is reported on a "dry weight" basis.

REPORT # : JR8358

DATE REPORTED: September 28, 1999
REFERENCE: NO255.F30.050.225

PROJECT NAME : Gas Hill

PAGE 14 OF 26

EPA METHOD 5035/802 VOLATILE ORGANICS	1 -	NASJ-159-GH-	-38-14	<u>Units</u>
Methyl tert-butyl e Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene		2.0 U 1.5 U 1.5 U 1.5 U 2.0 U 1.0 U 1.0 U 1.0 U	D3 D3 D3 D3 D3 D3 D3 D3 D3	μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg
Surrogate (Bromoflu Surrogate Expected Surrogate Reported Surrogate Percent R Surrogate Control L Date Analyzed	Value Value ecovery	50 46.5 93 28-165 09/06/99		µg/Kg µg/Kg % %
MISCELLANEOUS	METHOD	NASJ-159-GH-	38-14	<u>Units</u>
Percent Solids Date Analyzed	SM2540G	. 80 09/07/9	99	%

U = Compound was analyzed for but not detected to the level shown.

DW = Analysis is reported on a "dry weight" basis.
D3 = Analyte value determined from a 1:1.16 dilution.

REPORT # : JR8358

DATE REPORTED: September 28, 1999
REFERENCE: NO255.F30.050.225

PROJECT NAME : Gas Hill

PAGE 15 OF 26

EPA METHOD 3550/8310 - PAH BY HPLC	NASJ-159-GH-38-14	<u>Units</u>
Naphthalene Acenaphthylene	21 U 42 U	μg/Kg μg/Kg
1-Methylnaphthalene	42 U	μg/Kg μg/Kg
2-Methylnaphthalene	42 U	μg/Kg
Acenaphthene	21 U	μg/Kg
Fluorene	4.2 U	μg/Kg
Phenanthrene	42 U	μg/Kg
Anthracene	2.0 U	μg/Kg
Fluoranthene	4.2 U	μg/Kg
Pyrene	2.1 U	μg/Kg
Benzo(a)anthracene	2.1 U	μg/Kg
Chrysene	2.1 U	μg/Kg
Benzo(b) fluoranthene	4.0 U	μg/Kg
Benzo(k) fluoranthene	2.0 U	μg/Kg
Benzo(a) pyrene	2.0 U	μg/Kg
Dibenzo(a, h) anthracene	4.2 U	μg/Kg
Benzo(g,h,i)perylene	4.2 U	μg/Kg
Indeno(1,2,3-cd)pyrene	2.1 U	μ g/Kg
Surrogate (p-terphenyl)		
Surrogate Expected Value	330	μg/Kg
Surrogate Reported Value	363	μg/Kg
Surrogate Percent Recovery	110	%
Surrogate Control Limit	50-146	8
Date Extracted	09/04/99	
Date Analyzed	09/08/99	

U = Compound was analyzed for but not detected to the level shown. DW = Analysis is reported on a "dry weight" basis.

REPORT # : JR8358

DATE REPORTED: September 28, 1999
REFERENCE : NO255.F30.050.225

PROJECT NAME : Gas Hill

PAGE 16 OF 26

TOTAL METALS	METHOD	NASJ-159-GH-38-14	<u>Units</u>
Arsenic Date Analyzed	3050/6010	0.60 U 09/03/99	mg/Kg
Barium Date Analyzed	3050/6010	25 U 09/03/99	mg/Kg
Cadmium Date Analyzed	3050/6010	1.0 U 09/03/99	mg/Kg
Chromium Date Analyzed	3050/6010	1.4 09/03/99	mg/Kg
Lead Date Analyzed	3050/6010	1.9 09/03/99	mg/Kg
Mercury Date Analyzed	7471	0.010 U 09/04/99	mg/Kg
Selenium Date Analyzed	3050/6010	2.0 U 09/03/99	mg/Kg
Silver Date Analyzed	3050/6010	2.0 U 09/03/99	mg/Kg

 $^{{\}tt U}={\tt Compound}$ was analyzed for but not detected to the level shown. ${\tt DW}={\tt Analysis}$ is reported on a "dry weight" basis.

REPORT # : JR8358

DATE REPORTED: September 28, 1999 REFERENCE: NO255.F30.050.225

PROJECT NAME : Gas Hill

PAGE 17 OF 26

EPA METHOD FLPRO - PETROL. RESIDUAL ORG.	NASJ-159-GH-38-14	Units
Hydrocarbons (C8-C40)	8.2 U	mg/Kg
Surrogate (o-Terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limit Date Extracted Date Analyzed	1.65 1.12 68 51-145 09/02/99 09/07/99	mg/Kg mg/Kg %

 $^{{\}tt U}={\tt Compound}$ was analyzed for but not detected to the level shown. ${\tt DW}={\tt Analysis}$ is reported on a "dry weight" basis.

REPORT # : JR8358

DATE REPORTED: September 28, 1999 **REFERENCE** : NO255.F30.050.225

PROJECT NAME : Gas Hill

PAGE 18 OF 26

EPA METHOD 5035/8021 -		
VOLATILE ORGANICS	NASJ-159-GH-39-1	4 <u>Units</u>
Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	2.0 U D4 1.6 U D4 1.6 U D4 1.6 U D4 4.2 I D4 10 I D4 1.0 U D4 1.0 U D4 1.0 U D4 1.0 U D4	μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg
Surrogate (Bromofluorobenzene) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limits Date Analyzed	50 45 90 28-165 09/06/99	μg/Kg μg/Kg % %

MISCELLANEOUS	METHOD	NASJ-159-GH-39-14	<u>Units</u>
Percent Solids Date Analyzed	SM2540G	77 . 09/07/99	99

U = Compound was analyzed for but not detected to the level shown.

I = Analyte detected; value is between the Method Detection Level (MDL) and the Practical Quantitation Level (PQL).

DW = Analysis is reported on a "dry weight" basis. D4 = Analyte value determined from a 1:1.19 dilution.

REPORT # : JR8358

DATE REPORTED: September 28, 1999 REFERENCE: NO255.F30.050.225

PROJECT NAME : Gas Hill

PAGE 19 OF 26

EPA METHOD 3550/8310 -		
PAH BY HPLC	NASJ-159-GH-39-14	${\tt Units}$
Naphthalene	22 U	μg/Kg
Acenaphthylene	43 U	μg/Kg
1-Methylnaphthalene	210	μg/Kg
2-Methylnaphthalene	180	$\mu g/Kg$
Acenaphthene	22 U	μg/Kg
Fluorene	8.0	$\mu g/Kg$
Phenanthrene	43 U	μ g/Kg
Anthracene	2.0 U	μ g/Kg
Fluoranthene	8.0	μ g/Kg
Pyrene	2.2 U	μg/Kg
Benzo(a)anthracene	2.0 I	μ g/Kg
Chrysene	18	μ g/Kg
Benzo(b) fluoranthene	4.0 U	μg/Kg
Benzo(k) fluoranthene	2.0 U	μ g/Kg
Benzo(a)pyrene	2.0 U	μ g/Kg
Dibenzo(a,h)anthracene	22	μ g/Kg
Benzo(g,h,i)perylene	4.3 U	μ g/Kg
Indeno(1,2,3-cd)pyrene	2.0 I	μg/Kg
Surrogate (p-terphenyl)		
Surrogate Expected Value	330	μg/Kg
Surrogate Reported Value	363	μg/Kg
Surrogate Percent Recovery	110	%
Surrogate Control Limit	50-146	%
Date Extracted	09/04/99	
Date Analyzed	09/08/99	

U = Compound was analyzed for but not detected to the level shown.

I = Analyte detected; value is between the Method Detection Level (MDL) and the Practical Quantitation Level (PQL).

DW = Analysis is reported on a "dry weight" basis.

REPORT # : JR8358

DATE REPORTED: September 28, 1999
REFERENCE: NO255.F30.050.225
PROJECT NAME: Gas Hill

PAGE 20 OF 26

TOTAL METALS	METHOD	NASJ-159-GH-39-14	<u>Units</u>
Arsenic Date Analyzed	3050/6010	1.8 I 09/03/99	mg/Kg
Barium Date Analyzed	3050/6010	32 09/03/99	mg/Kg
Cadmium Date Analyzed	3050/6010	1.0 U 09/03/99	mg/Kg
Chromium Date Analyzed	3050/6010	7.0 09/03/99	mg/Kg
Lead Date Analyzed	3050/6010	28 09/03/99	mg/Kg
Mercury Date Analyzed	7471	0.010 U 09/04/99	mg/Kg
Selenium Date Analyzed	3050/6010	2.0 09/03/99	mg/Kg
Silver Date Analyzed	3050/6010	2.0 U 09/03/99	mg/Kg

U = Compound was analyzed for but not detected to the level shown.

I = Analyte detected; value is between the Method Detection Level (MDL) and the Practical Quantitation Level (PQL).

DW = Analysis is reported on a "dry weight" basis.

REPORT # : JR8358

DATE REPORTED: September 28, 1999 REFERENCE: NO255.F30.050.225

PROJECT NAME : Gas Hill

PAGE 21 OF 26

EPA METHOD FLPRO - PETROL. RESIDUAL ORG.	NASJ-159-GH-39-14	<u>Units</u>
Hydrocarbons (C8-C40)	8.6 U	mg/Kg
Surrogate (o-Terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limit Date Extracted Date Analyzed	1.65 1.25 67 51-145 09/02/99 09/08/99	mg/Kg mg/Kg %

 $^{{\}tt U}={\tt Compound}$ was analyzed for but not detected to the level shown. ${\tt DW}={\tt Analysis}$ is reported on a "dry weight" basis.

REPORT # : JR8358

DATE REPORTED: September 28, 1999 REFERENCE: NO255.F30.050.225

PROJECT NAME : Gas Hill

PAGE 22 OF 26

EPA METHOD 5035/8021 -		
VOLATILE ORGANICS	LAB BLANK	<u>Units</u>
Methyl tert-butyl ether	2.0 U	μg/Kg
Benzene	1.0 U	μg/Kg
Toluene	1.0 U	μg/Kg
Chlorobenzene	1.0 U	μg/Kg
Ethylbenzene	1.0 U	μg/Kg
m-Xylene & p-Xylene	2.0 U	μg/Kg
o-Xylene	1.0 U	μg/Kg
1,3-Dichlorobenzene	1.0 U	μg/Kg
1,4-Dichlorobenzene	1.0 U	μg/Kg
1,2-Dichlorobenzene	1.0 U	μ g/Kg
Surrogate (Bromofluorobenzene)		
Surrogate Expected Value	50	μg/Kg
Surrogate Reported Value	44	μg/Kg
Surrogate Percent Recovery	. 88	* 3
Surrogate Control Limits	28-165	%
Date Analyzed	09/06/99	•

REPORT # : JR8358

DATE REPORTED: September 28, 1999 REFERENCE: NO255.F30.050.225

PROJECT NAME : Gas Hill

PAGE 23 OF 26

<u>LAB</u> <u>BLANK</u>	Units
17 U	μg/Kg
	μg/Kg
	μg/Kg
	μg/Kg
	μ g/Kg
	μg/Kg
	μg/Kg
	μg/Kg
	μ g/Kg
	μ g/Kg
	μg/Kg
	μg/Kg
	μg/Kg
	μ g/Kg
	μg/Kg
	μg/Kg
	μg/Kg
1.7 U	μg/Kg
330	μg/Kg
310	μg/Kg
94	%
50-146	%
09/04/99	
09/07/99	
	17 U 33 U 33 U 33 U 17 U 3.3 U 3.3 U 2.0 U 3.3 U 1.7 U 1.7 U 1.7 U 1.7 U 3.0 U 2.0 U 2.0 U 3.3 U 3.3 U 1.7 U 3.0 U 2.0 U 3.1 U 3.1 U 3.2 U 3.3 U 3.3 U 3.3 U 3.3 U 3.3 U 3.4 U 3.5 U 3.6 U 3.7 U

REPORT # : JR8358

DATE REPORTED: September 28, 1999
REFERENCE: NO255.F30.050.225

PROJECT NAME : Gas Hill

PAGE 24 OF 26

TOTAL METALS	METHOD	LAB BLANK	<u>Units</u>
Arsenic Date Analyzed	3050/6010	0.50 U 09/03/99	mg/Kg
Barium Date Analyzed	3050/6010	20 U 09/03/99	mg/Kg
Cadmium Date Analyzed	3050/6010	1.0 U 09/03/99	mg/Kg
Chromium Date Analyzed	3050/6010	1.0 U 09/03/99	mg/Kg
Lead Date Analyzed	3050/6010	1.0 U 09/03/99	mg/Kg
Mercury Date Analyzed	7471	0.010 U 09/04/99	mg/Kg
Selenium Date Analyzed	3050/6010	2.0 U 09/03/99	mg/Kg
Silver Date Analyzed	3050/6010	2.0 U 09/03/99	mg/Kg

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR8358

DATE REPORTED: September 28, 1999
REFERENCE: NO255.F30.050.225

PROJECT NAME : Gas Hill

PAGE 25 OF 26

QUALITY CONTROL DATA

PETROL. RESIDUAL ORG.	LAB BLANK	<u>Units</u>
Hydrocarbons (C8-C40)	6.6 U	mg/Kg
Surrogate (o-Terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limit Date Extracted Date Analyzed	1.65 1.11 67 51-145 09/02/99 09/07/99	mg/Kg mg/Kg % %

REPORT # : JR8358

DATE REPORTED: September 28, 1999
REFERENCE: NO255.F30.050.225

PROJECT NAME : Gas Hill

PAGE 26 OF 26

QUALITY CONTROL DATA

<u>Parameter</u>	% RECOVERY MS/MSD/LCS	LCS TARGET µg/Kg	ACCEPT LIMITS	% RPD MS/MSD	ACCEPT LIMITS
EPA Method 8020/8021 Benzene Toluene Ethylbenzene o-Xylene	#52/ 54/ 97 #48/ 50/ 97 #40/ 41/ 96 #39/ 41/ 96	20 20 20 20	59-144 67-132 60-169 62-183	4 4 2 5	25 58 28 24
EPA Method 8310 Naphthalene Acenaphthene Benzo(a)pyrene Benzo(g,h,i)perylene	108/110/112 111/ 91/126 87/ 85/ 85 100/104/103	330 330 33 66	26-125 20-143 42-138 51-142	2 20 2 4	45 35 38 26
Total Metals Arsenic, 3050/6010 Barium, 3050/6010 Cadmium, 3050/6010 Chromium, 3050/6010 Lead, 3050/6010 Mercury, 7471 Selenium, 3050/6010 Silver, 3050/6010	98/ 96/101 97/ 95/101 97/ 94/100 95/ 94/100 98/ 96/102 92/ 96/112 97/ 94/101 99/ 96/103	50 50 25 50 50 0.25 50	53-153 70-120 59-130 57-135 63-128 71-138 60-121 69-118	2 2 3 1 2 4 3	22 16 24 24 26 13 14
PETROL. RESIDUAL ORG. Hydrocarbons (C8-C40)	73/ 77/ 66	56.1	62-204	5	25

NOTE: RCRA8 Metals and LCS FLPRO target units are mg/Kg Environmental Conservation Laboratories Comprehensive QA Plan #960038

= Less Than

MS = Matrix Spike

MSD = Matrix Spike Duplicate

LCS = Laboratory Control Standard

RPD = Relative Percent Difference

This report shall not be reproduced except in full, without the written approval of the laboratory. Results for these procedures apply only to the samples as submitted.

^{# =} One or more of the associated value failed to meet laboratory established criteria for accuracy.

TETRA TECH		CHAIN O	F CUST	ODY	1	NUMBER	15	9-1	1	1		PAGE _	OF/	
PROJECT NO: NO255. F30.050. SAMPLERS (SIGNATURE)	225 GAS HILL	PROJE Gre FIELD	CT MANA G KO DI ERAT	AGER ANI	D PHONE 90 DER AND	NUMBER	/-04	00	LAB	ORATOR N (D RESS	Y NAME A	ND CONT	TACT:	·, ~
Mewn W. Dd	e.	MER CARRIE N	V/√ R/WAYE	DAVE BILL NUM	BER	90/20	8/- 0	400	CITY	STATE	, NV , LL	c cl.		
STANDARD TAT RUSH TAT	RIDAYX	N/			PLASTI	INER TYP IC (P) or G RVATIVE			/G/	6/	G/F	,		
] 72 hr. 7 day 14 day	-			USED			No	دمهرو	More	Mono			
DATE 1999 YEAR 1999		MATRIX	GRAB (G) COMP (C)		TIPE OF	ANALYSIS FV 720	A N	310 -01	118 S	A AND				
	SAMPLE ID			o Z	/	<u> </u>	× 4	1/40						COMMENTS
121 1420 NASJ	-159-GH-35-16 -159-GH-36-4	\$0 \$0	G	6	/	V	/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	•		<u> </u>		Cool	to 4°C
131 1510 NAST.	159-GH-37-4	\$0	G	6	1	✓	✓ ✓	/						
9/1 0810 NASJ.	-159-GH-38-14	50	G	6	7	/		/						
8/31 1/5/10 NAST- 9/1 0810 NAST- 9/1 0920 NAST-	-159- GH-39-14	\$0 \$0	G	4	✓.	1	J	J						
											<u> </u>			
1. RELINDINSHED BY	Se	DATE	1/99	TIME 7	9 1	RECEIVE	DBY 2	1/W				DAT	9/11/69	TIME 1:39
2. RELINQUISHED BY		DATE	/'	TIME	7	RECEIVE	D BY	, <u>,, , , , , , , , , , , , , , , , , , </u>				DAT	1101111	TIME
3. RELINQUISHED BY COMMENTS		DATE		TIME	3	B. RECEIVE	D BY					DAT	E	TIME
	R 8358 /HITE (ACCOMPANIES SAMPLE)			YELLOW (EIELD O) DV			50000					
= . =	THE (ACCOMINATION SAMPLE)			I ELLOVY (LIELD CC	JP Y)			PINK /FI	LE COPY	7			3/00

sample_no	run_number	parameter	method	units	idl	mdl	crdl_crql	dil_factor	pct_moist
NASJ-159-GH-35-16	1	Mercury	7471	mg/Kg	0.004		0.01	1	17
NASJ-159-GH-35-16	1	Silver	3050/6010	mg/Kg	0.05		2	1	17
NASJ-159-GH-35-16	1	Arsenic	3050/6010	mg/Kg	0.4		0.6	1	17
NASJ-159-GH-35-16	1	Barium	3050/6010	mg/Kg	0.1		24	1	17
NASJ-159-GH-35-16	1	Cadmium	3050/6010	mg/Kg	0.05		1	1	17
NASJ-159-GH-35-16	1	Chromium	3050/6010	mg/Kg	0.15		1	1 -	17
NASJ-159-GH-35-16	1	Lead	3050/6010	mg/Kg	0.15		1	1	17
NASJ-159-GH-35-16	1	Selenium	3050/6010	mg/Kg	0.2		2	1	17
NASJ-159-GH-35-16	1	Naphthalene	3550/8310	ug/Kg		8.1	20	1	17
NASJ-159-GH-35-16	1	Acenaphthylene	3550/8310	ug/Kg		4	40	↑	17
NASJ-159-GH-35-16	1	1-Methylnaphthalene	3550/8310	ug/Kg		4	40	1	17
NASJ-159-GH-35-16	1	2-Methylnaphthalene	3550/8310	ug/Kg		8.1	40	1	17
NASJ-159-GH-35-16	1	Acenaphthene	3550/8310	ug/Kg		8.1	20	1	17
NASJ-159-GH-35-16	1	Fluorene	3550/8310	ug/Kg		1.6	4	1	1,7
NASJ-159-GH-35-16	1	Phenanthrene	3550/8310	ug/Kg		1.6	40	1	17
NASJ-159-GH-35-16	1	Anthracene	3550/8310	ug/Kg		1	2	1	17
NASJ-159-GH-35-16	1	Fluoranthene	3550/8310	ug/Kg		1.6	4	1	17
NASJ-159-GH-35-16	1	Pyrene	3550/8310	ug/Kg		1.6	2	1	17
NASJ-159-GH-35-16	1	Benzo(a)anthracene	3550/8310	ug/Kg		0.81	2	1	17
NASJ-159-GH-35-16	1	Chrysene	3550/8310	ug/Kg		0.81	2	1	17
NASJ-159-GH-35-16	1	Benzo(b)fluoranthene	3550/8310	ug/Kg		2	4	1	17
NASJ-159-GH-35-16	1	Benzo(k)fluoranthene	3550/8310	ug/Kg		1	2	1	17
NASJ-159-GH-35-16	1	Benzo(a)pyrene	3550/8310	ug/Kg		1	2	1	17
NASJ-159-GH-35-16	1	Dibenzo(a,h)anthracene	3550/8310	ug/Kg		2.8	4	1	17
NASJ-159-GH-35-16	1	Benzo(g,h,i)perylene	3550/8310	ug/Kg		2.8	4	1	17
NASJ-159-GH-35-16	1	Indeno(1,2,3-cd)pyrene	3550/8310	ug/Kg		0.81	2	1	17
NASJ-159-GH-35-16	1	P-Terphenyl	3550/8310	%				1	
NASJ-159-GH-35-16	1	Methyl tert-butyl ether	5035/8021	ug/Kg		2	2	0.91	17
NASJ-159-GH-35-16	1	Benzene	5035/8021	ug/Kg		8.0	1.1	0.91	17
NASJ-159-GH-35-16	1	Toluene	5035/8021	ug/Kg		1	1.1	0.91	17
NASJ-159-GH-35-16	1	Chlorobenzene	5035/8021	ug/Kg		1	1.1	0.91	17
NASJ-159-GH-35-16	1	Ethylbenzene	5035/8021	ug/Kg		1	1.1	0.91	17
NASJ-159-GH-35-16	1	m-Xylene & p-Xylene	5035/8021	ug/Kg		2	2	0.91	17
NASJ-159-GH-35-16	1	o-Xylene	5035/8021	ug/Kg		1.1	1.1	0.91	17
NASJ-159-GH-35-16	1	1,3-Dichlorobenzene	5035/8021	ug/Kg		1.1	1.1	0.91	17
NASJ-159-GH-35-16	1	1,4-Dichlorobenzene	5035/8021	ug/Kg		1.1	1.1	0.91	17
NASJ-159-GH-35-16	1	1,2-Dichlorobenzene	5035/8021	ug/Kg		1.1	1.1	0.91	17
NASJ-159-GH-35-16	1	Bromofluorobenzene	5035/8021	%				0.91	
NASJ-159-GH-35-16	1,	Hydrocarbons (C8-C40)	FLPRO	mg/Kg		8	8	1	17
NASJ-159-GH-35-16	1	o-Terphenyl	FLPRO	%				1	
NASJ-159-GH-35-16	1	Nonatriacontane	FLPRO	%				1	
NASJ-159-GH-35-16	1	Percent Solids	SM2540G	%		0.01	0.01		

										2 of 5	,
N	ASJ-159-GH-36-4	1	Mercury	7471	mg/Kg	0.004		0.01	1	10	
N	ASJ-159-GH-36-4	1	Silver	3050/6010	mg/Kg	0.05		2	1	10	
N	ASJ-159-GH-36-4	1	Arsenic	3050/6010	mg/Kg	0.4		0.6	1	10	
Ν	ASJ-159-GH-36-4	1	Barium	3050/6010	mg/Kg	0.1		22	1	10	
Ν	ASJ-159-GH-36-4	1	Cadmium	3050/6010	mg/Kg	0.05		1	1	10	
Ν	ASJ-159-GH-36-4	1	Chromium	3050/6010	mg/Kg	0.15		1	1	10	
Ν	ASJ-159-GH-36-4	1	Lead	3050/6010	mg/Kg	0.15		1	1	10	
Ν	ASJ-159-GH-36-4	1	Selenium	3050/6010	mg/Kg	0.2		2	1	10	
Ν	ASJ-159-GH-36-4	1	Naphthalene	3550/8310	ug/Kg		7.4	19	1	10	
Ν	ASJ-159-GH-36-4	1	Acenaphthylene	3550/8310	ug/Kg		3.7	37	1	10	
N	ASJ-159-GH-36-4	1	1-Methylnaphthalene	3550/8310	ug/Kg		3.7	37	1	10	
N	ASJ-159-GH-36-4	1	2-Methylnaphthalene	3550/8310	ug/Kg		7.4	37	1	10	
N	ASJ-159-GH-36-4	1	Acenaphthene	3550/8310	ug/Kg		7.4	19	1	10	
N	ASJ-159-GH - 36-4	1	Fluorene	3550/8310	ug/Kg		1.5	3.7	1	10	
N	ASJ-159-GH - 36-4	1	Phenanthrene	3550/8310	ug/Kg		1.5	37	1	10	
N	ASJ-159-GH-36-4	1	Anthracene	3550/8310	ug/Kg		1	2	1	10	
N	ASJ-159-GH-36-4	1	Fluoranthene	3550/8310	ug/Kg		1.5	3.7	1	10	
N.	ASJ-159-GH-36-4	1	Pyrene	3550/8310	ug/Kg		1.5	1.9	1	10	
N.	ASJ-159-GH-36-4	1	Benzo(a)anthracene	3550/8310	ug/Kg		0.74	1.9	1	10	
N	ASJ-159-GH-36-4	1	Chrysene	3550/8310	ug/Kg		0.74	1.9	1	10	
N	ASJ-159-GH-36-4	1	Benzo(b)fluoranthene	3550/8310	ug/Kg		2	3	1	10	
N	ASJ-159-GH-36-4	1	Benzo(k)fluoranthene	3550/8310	ug/Kg		1	2	1	10	
N	ASJ-159-GH-36-4	1	Benzo(a)pyrene	3550/8310	ug/Kg		1	2	1	10	
N.	ASJ-159-GH-36-4	1	Dibenzo(a,h)anthracene	3550/8310	ug/Kg		2.6	3.7	1	10	
N	ASJ-159-GH-36-4	1	Benzo(g,h,i)perylene	3550/8310	ug/Kg		2.6	3.7	1	10	
N.	ASJ-159-GH-36-4	1	Indeno(1,2,3-cd)pyrene	3550/8310	ug/Kg		0.74	1.9	1	10	
N.	ASJ-159-GH-36-4	1	P-Terphenyl	3550/8310	%				1		
N.	ASJ-159-GH-36-4	1	Methyl tert-butyl ether	5035/8021	ug/Kg		2	2	1.14	10	
N.	ASJ-159-GH-36-4	1	Benzene	5035/8021	ug/Kg		1	1.2	1.14	10	
N.	ASJ-159-GH-36-4	1	Toluene	5035/8021	ug/Kg		1	1.2	1.14	10	
N.	ASJ-159-GH-36-4	1	Chlorobenzene	5035/8021	ug/Kg		1	1.2	1.14	10	
N.	ASJ-159-GH-36-4	1	Ethylbenzene	5035/8021	ug/Kg		1	1.2	1.14	10	
N.	ASJ-159-GH-36-4	1	m-Xylene & p-Xylene	5035/8021	ug/Kg		2	2	1.14	10	
N,	ASJ-159-GH-36-4	1	o-Xylene	5035/8021	ug/Kg		1	1	1.14	10	
N,	ASJ-159-GH-36-4	1	1,3-Dichlorobenzene	5035/8021	ug/Kg		1	1	1.14	10	
N.	ASJ-159-GH-36-4	1	1,4-Dichlorobenzene	5035/8021	ug/Kg		1	1	1.14	10	
N,	ASJ-159-GH-36-4	_ 1	1,2-Dichlorobenzene	5035/8021	ug/Kg		1	1	1.14	10	
N,	ASJ-159-GH-36-4	1 .	Bromofluorobenzene	5035/8021	%				1.14		
N,	ASJ-159-GH-36-4	1	Hydrocarbons (C8-C40)	FLPRO	mg/Kg		7.3	7.3	. 1	10	
N,	ASJ-159-GH-36-4	1	o-Terphenyl	FLPRO	%				1		
N.	ASJ-159-GH-36-4	1	Nonatriacontane	FLPRO	%				1		
N.	ASJ-159-GH-36-4	1	Percent Solids	SM2540G	%		0.01	0.01			

									0 0. 0
NASJ-159-GH-37-4	1	Mercury	7471	mg/Kg	0.004		0.01	1	21
NASJ-159-GH-37-4	1	Silver	3050/6010	mg/Kg	0.05		2	1	21
NASJ-159-GH-37-4	1	Arsenic	3050/6010	mg/Kg	0.4		0.6	1	21
NASJ-159-GH-37-4	1	Barium	3050/6010	mg/Kg	0.1		25	1	21
NASJ-159-GH-37-4	1	Cadmium	3050/6010	mg/Kg	0.05		1	1	21
NASJ-159-GH-37-4	1	Chromium	3050/6010	mg/Kg	0.15		1	1	21
NASJ-159-GH-37-4	1	Lead	3050/6010	mg/Kg	0.15		1	1	21
NASJ-159-GH-37-4	1	Selenium	3050/6010	mg/Kg	0.2		2	1	21
NASJ-159-GH-37-4	1	Naphthalene	3550/8310	ug/Kg		8.5	21	1	21
NASJ-159-GH-37-4	1	Acenaphthylene	3550/8310	ug/Kg		4.2	42	1	21
NASJ-159-GH-37-4	1	1-Methylnaphthalene	3550/8310	ug/Kg		4.2	42	1	21
NASJ-159-GH-37-4	1	2-Methylnaphthalene	3550/8310	ug/Kg		8.5	42	1	21
NASJ-159-GH-37-4	1	Acenaphthene	3550/8310	ug/Kg		8.5	21	1	21
NASJ-159-GH-37-4	1	Fluorene	3550/8310	ug/Kg		1.7	4.2	1	21
NASJ-159-GH-37-4	1	Phenanthrene	3550/8310	ug/Kg		1.7	42	1	21
NASJ-159-GH-37-4	1	Anthracene	3550/8310	ug/Kg		1	2	1	21
NASJ-159-GH-37-4	1	Fluoranthene	3550/8310	ug/Kg		1.7	4.2	1	21
NASJ-159-GH-37-4	1	Pyrene	3550/8310	ug/Kg	•	1.7	2.1	1	21
NASJ-159-GH-37-4	1	Benzo(a)anthracene	3550/8310	ug/Kg		0.85	2.1	1	21
NASJ-159-GH-37-4	1	Chrysene	3550/8310	ug/Kg		0.85	2.1	1	21
NASJ-159-GH-37-4	1	Benzo(b)fluoranthene	3550/8310	ug/Kg		2	4	1	21
NASJ-159-GH-37-4	1	Benzo(k)fluoranthene	3550/8310	ug/Kg		1	2	1	21
NASJ-159-GH-37-4	1	Benzo(a)pyrene	3550/8310	ug/Kg		1	2	1	21
NASJ-159-GH-37-4	1	Dibenzo(a,h)anthracene	3550/8310	ug/Kg		3	4.2	1	21
NASJ-159-GH-37-4	1	Benzo(g,h,i)perylene	3550/8310	ug/Kg		3	4.2	1	21
NASJ-159-GH-37-4	1	Indeno(1,2,3-cd)pyrene	3550/8310	ug/Kg		0.85	2.1	1 .	21
NASJ-159-GH-37-4	1	P-Terphenyl	3550/8310	%				1	
NASJ-159-GH-37-4	1	Methyl tert-butyl ether	5035/8021	ug/Kg		2	2	1.05	21
NASJ-159-GH-37-4	1	Benzene	5035/8021	ug/Kg		<u> </u>	1	1.05	21
NASJ-159-GH-37-4	1	Toluene	5035/8021	ug/Kg		1.1	1	1.05	21
NASJ-159-GH-37-4	1	Chlorobenzene	5035/8021	ug/Kg		1.1	1	1.05	21
NASJ-159-GH-37-4	1	Ethylbenzene	5035/8021	ug/Kg		1.1	1	1.05	. 21
NASJ-159-GH-37-4	1	m-Xylene & p-Xylene	5035/8021	ug/Kg		2	2	1.05	21
NASJ-159-GH-37-4	1	o-Xylene	5035/8021	ug/Kg		1	1	1.05	21
NASJ-159-GH-37-4	1	1,3-Dichlorobenzene	5035/8021	ug/Kg		1	1	1.05	21
NASJ-159-GH-37-4	1	1,4-Dichlorobenzene	5035/8021	ug/Kg		1	1	1.05	21
NASJ-159-GH-37-4	1	1,2-Dichlorobenzene	5035/8021	ug/Kg		1	1	1.05	21
NASJ-159-GH-37-4	1	Bromofluorobenzene	5035/8021	%				1.05	
NASJ-159-GH-37-4	1	Hydrocarbons (C8-C40)	FLPRO	mg/Kg		8.4	8.4	1	21
NASJ-159-GH-37-4	1	o-Terphenyl	FLPRO	%				1	
NASJ-159-GH-37-4	1	Nonatriacontane	FLPRO	%				1	
NASJ-159-GH-37-4	1	Percent Solids	SM2540G	%		0.01	0.01		

NASJ-159-GH-38-14	1	Mercury	7471	mg/Kg	0.004		0.01	1	20
NASJ-159-GH-38-14	1	Silver	3050/6010	mg/Kg	0.05		2	1	20
NASJ-159-GH-38-14	1	Arsenic	3050/6010	mg/Kg	0.4		0.6	1	20
NASJ-159-GH-38-14	1	Barium	3050/6010	mg/Kg	0.1		25	1	20
NASJ-159-GH-38-14	1	Cadmium	3050/6010	mg/Kg	0.05		1	1	20
NASJ-159-GH-38-14	1	Chromium	3050/6010		0.15		1	1	20
NASJ-159-GH-38-14	1	Lead	3050/6010	mg/Kg	0.15		1	1	20
NASJ-159-GH-38-14	1	Selenium	3050/6010	mg/Kg	0.2		2	1	20
NASJ-159-GH-38-14	1	Naphthalene	3550/8310	ug/Kg		8.4	21	1	20
NASJ-159-GH-38-14	1	Acenaphthylene	3550/8310	ug/Kg		4.1	42	1	20
NASJ-159-GH-38-14	1 ·	1-Methylnaphthalene	3550/8310	ug/Kg		4.1	42	1	20
NASJ-159-GH-38-14	1	2-Methylnaphthalene	3550/8310	ug/Kg		8.4	42	1	20
NASJ-159-GH-38-14	· 1	Acenaphthene	3550/8310	ug/Kg		8.4	21	1	20
NASJ-159-GH-38-14	1	Fluorene	3550/8310	ug/Kg		1.7	4.2	1	20
NASJ-159-GH-38-14	1	Phenanthrene	3550/8310	ug/Kg		1.7	42	1	20
NASJ-159-GH-38-14	1	Anthracene	3550/8310	ug/Kg		1	. 2	1	20
NASJ-159-GH-38-14	1	Fluoranthene	3550/8310	ug/Kg		1.7	4.2	1	20
NASJ-159-GH-38-14	1	Pyrene	3550/8310	ug/Kg		1.7	2.1	1	20
NASJ-159-GH-38-14	1	Benzo(a)anthracene	3550/8310	ug/Kg		0.84	2.1	1	20
NASJ-159-GH-38-14	1	Chrysene	3550/8310	ug/Kg		0.84	2.1	1	20
NASJ-159-GH-38-14	1	Benzo(b)fluoranthene	3550/8310	ug/Kg		2	4	1	20
NASJ-159-GH-38-14	1	Benzo(k)fluoranthene	3550/8310	ug/Kg		1	2	1	20
NASJ-159-GH-38-14	1	Benzo(a)pyrene	3550/8310	ug/Kg		1	2	· 1	20
NASJ-159-GH-38-14	1	Dibenzo(a,h)anthracene	3550/8310	ug/Kg		2.9	4.2	1	20
NASJ-159-GH-38-14	1	Benzo(g,h,i)perylene	3550/8310	ug/Kg		2.9	4.2	1	20
NASJ-159-GH-38-14	1	Indeno(1,2,3-cd)pyrene	3550/8310	ug/Kg		0.84	2.1	1	20
NASJ-159-GH-38-14	1	P-Terphenyl	3550/8310	%				1	
NASJ-159-GH-38-14	1	Methyl tert-butyl ether	5035/8021	ug/Kg		2	2	1.16	20
NASJ-159-GH-38-14	1	Benzene	5035/8021	ug/Kg		1.1	1.5	1.16	20
NASJ-159-GH-38-14	1	Toluene	5035/8021	ug/Kg		1 .	1.5	1.16	20
NASJ-159-GH-38-14	1	Chlorobenzene	5035/8021	ug/Kg		1	1.5	1.16	20
NASJ-159-GH-38-14	1	Ethylbenzene	5035/8021	ug/Kg		1	1.5	1.16	20
NASJ-159-GH-38-14	1	m-Xylene & p-Xylene	5035/8021	ug/Kg		2	2	1.16	20
NASJ-159-GH-38-14	1	o-Xylene	5035/8021	ug/Kg		1	1	1,16	20
NASJ-159-GH-38-14	1	1,3-Dichlorobenzene	5035/8021	ug/Kg		1	1	1.16	20
NASJ-159-GH-38-14	1	1,4-Dichlorobenzene	5035/8021	ug/Kg		1	1	1.16	20
NASJ-159-GH-38-14	1	1,2-Dichlorobenzene	5035/8021	ug/Kg		1	1	1.16	20
NASJ-159-GH-38-14	1	Bromofluorobenzene	5035/8021	%				1.16	
NASJ-159-GH-38-14	1	Hydrocarbons (C8-C40)	FLPRO	mg/Kg		8.2	8.2	1	20
NASJ-159-GH-38-14	1	o-Terphenyl	FLPRO	%				1	
NASJ-159-GH-38-14	1	Nonatriacontane	FLPRO	%	•			1	
NASJ-159-GH-38-14	1	Percent Solids	SM2540G	%		0.01	0.01		

								0 0. 0
NASJ-159-GH-39-14	1	Mercury	7471 mg	g/Kg 0	.004	0.01	1	23
NASJ-159-GH-39-14	1	Silver	3050/6010 mg	g/Kg (0.05	2	1	23
NASJ-159-GH-39-14	1	Arsenic	3050/6010 mg	g/Kg	0.4	0.6	1	23
NASJ-159-GH-39-14	1	Barium	3050/6010 mg	g/Kg	0.1	26	1	23
NASJ-159-GH-39-14	1	Cadmium	3050/6010 mg	g/Kg (0.05	1	1	23
NASJ-159-GH-39-14	1	Chromium	3050/6010 mg	g/Kg (0.15	1	1 ·	23
NASJ-159-GH-39-14	1	Lead	3050/6010 mg	g/Kg (0.15	1	1	23
NASJ-159-GH-39-14	1	Selenium	3050/6010 mg	g/Kg	0.2	2	1	23
NASJ-159-GH-39-14	1	Naphthalene	3550/8310 ug	g/Kg	8.7	22	1	23
NASJ-159-GH-39-14	1	Acenaphthylene	3550/8310 ug	g/Kg	4.3	43	1	23
NASJ-159-GH-39-14	1	1-Methylnaphthalene		g/Kg	4.3	43	1	23
NASJ-159-GH-39-14	1	2-Methylnaphthalene	3550/8310 ug	g/Kg	8.7	43	1	23
NASJ-159-GH-39-14	1	Acenaphthene	3550/8310 ug	g/Kg	8.7	22	1	23
NASJ-159-GH-39-14	1	Fluorene	3550/8310 ug	g/Kg	1.7	4.3	1	23
NASJ-159-GH-39-14	1	Phenanthrene		g/Kg	1.7	43	1	23
NASJ-159-GH-39-14	1	Anthracene	3550/8310 ug	g/Kg	1	2	1	23
NASJ-159-GH-39-14	1	Fluoranthene	3550/8310 ug	g/Kg	1.7	4.3	1	23
NASJ-159-GH-39-14	1	Pyrene	3550/8310 ug	g/Kg	1.7	2.2	. 1	23
NASJ-159-GH-39-14	1	Benzo(a)anthracene	3550/8310 ug	g/Kg	0.87	2.2	1	23
NASJ-159-GH-39-14	1	Chrysene	3550/8310 ug	g/Kg	0.87	2.2	1	23
NASJ-159-GH-39-14	1	Benzo(b)fluoranthene	3550/8310 ug	g/Kg	2	4	1 .	23
NASJ-159-GH-39-14	- 1	Benzo(k)fluoranthene	3550/8310 ug	g/Kg	1	2	1	23
NASJ-159-GH-39-14	1	Benzo(a)pyrene	3550/8310 ug	g/Kg	1	2	1	23
NASJ-159-GH-39-14	1	Dibenzo(a,h)anthracene	3550/8310 ug	g/Kg	3 .	4.3	1	23
NASJ-159-GH-39-14	1	Benzo(g,h,i)perylene	3550/8310 ug	g/Kg	3	4.3	1 .	23
NASJ-159-GH-39-14	1	Indeno(1,2,3-cd)pyrene	3550/8310 ug	g/Kg	0.87	2.2	1	23
NASJ-159-GH-39-14	1	P-Terphenyl		%			1	
NASJ-159-GH-39-14	1	Methyl tert-butyl ether	5035/8021 ug	g/Kg	2	2	1.19	23
NASJ-159-GH-39-14	1	Benzene	5035/8021 ug	g/Kg	1	1.6	1.19	23
NASJ-159-GH-39-14	1	Toluene	5035/8021 ug	g/Kg	1.4	1.6	1.19	23
NASJ-159-GH-39-14	1	Chlorobenzene	5035/8021 ug	g/Kg	1.4	1.6	1.19	23
NASJ-159-GH-39-14	1	Ethylbenzene	5035/8021 ug		1.4	1.6	1.19	23
NASJ-159-GH-39-14	1	m-Xylene & p-Xylene	5035/8021 ug	g/Kg	2	2	1.19	23
NASJ-159-GH-39-14	1	o-Xylene	5035/8021 ug	g/Kg	1	1	1.19	23
NASJ-159-GH-39-14	1	1,3-Dichlorobenzene		g/Kg	1	1	1.19	23
NASJ-159-GH-39-14	1	1,4-Dichlorobenzene	5035/8021 ug	g/Kg	1	1	1.19	23
NASJ-159-GH-39-14	1	1,2-Dichlorobenzene		g/Kg	1	1	1.19	23
NASJ-159-GH-39-14	1	Bromofluorobenzene	5035/8021	%			1.19	
NASJ-159-GH-39-14	1	Hydrocarbons (C8-C40)	FLPRO mg	g/Kg	8.6	8.6	1	23
NASJ-159-GH-39-14	1.	o-Terphenyl		%		•	1	
NASJ-159-GH-39-14	1	Nonatriacontane		%			1	
NASJ-159-GH-39-14	. 1	Percent Solids	SM2540G	%	0.01	0.01		

APPENDIX E WELL COMPLETION LOGS

TAX-189-GH-28

PROJECT: NAS CECIL PIELD DRILLING C	O.: PRECISION BORING NO.: 001
PROJECT No.: 70039 0255 DRILLER:	G. PITAK DATE COMPLETED: 07/27/99
SITE: GAS HILL DRILLING N	IETHOD: HOUON Stem/Mud ROTHORTHING:
GEOLOGIST: M. DALE DEV. METH	
	Elevation / Depth of Top of Riser: / ソル.
	Elevation / Height of Top of
	Surface Casing: 1 PM. HIZIGHT OF TOP OF SECONDERRY CASING 1 PET
	I.D. of Surface Casing: 8 pr IN CH
Ground Elevation =	Type of Surface Casing: Steel Gover
Datum:	Type of currace casing. Steel. WW
	Type of Surface Seal: SAKRETE
	Concrete 1. D. OF SECONDARY CASING 6 IN CH
7	1. D. OF SECONDARY CASING 6 IN CH 1. D. OF RISET: 2 IN CH TYPE of Secondary Prised CARING: PVC, SCH. 40 Type of Riser: DVC, SCH. 40 OUTER BUREHOLE DIAM: 12 IN CH BOREHOLE DIAMETER: (14) CH
	Type of Secondary Prival CARRY: PVC, SCH. 40
	Type of Riser: PVC, SCH. 40
	Borehole Diameter: 6 INCH
	Elevation / Depth Top of Rock: κ) / Δ
	Lievation / Deptil Top of Nock.
	Type of Backfill: Portuano
	CEMENT Type I (used some bentonite ponder ox inner tackfile)
	Elevation / Depth of Seal: / 26 FT.
	Type of Seal: BENTONITE CHUK
₩ ₩	Elevation / Depth of Top of Filter Pack: / 28 FT.
	Elevation / Depth of Top of Screen: /30 FT.
	Type of Screen: PVC, ScH. 40
	Slot Size x Length: 0.0 lo IN X 5 PT.
	I.D. of Screen: 2 INCH
	Type of Filter Pack: 30 6240€ € AND
	Elevation / Depth of Bottom of Screen: 135 PT.
	Elevation / Depth of Bottom of
	Filter Pack: 135 FT, Type of Backfill Below Well: NATIVE SOIL
Not to Scale	Elevation / Total Depth of Borehole: 135 FT.
1 TYOU COUNTY	

JAX-159-GH-29

PROJECT: NAS CECIL FIELD TAX DRILLING CO.: PROJECT NO.: -0039 0255 DRILLER: SITE: CAS HILL DRILLING METHOD: HILL DEV. METHOD: Elevation / Depth of Top of Surface Casing: / Dev. Method Surface Casing:	<u> 27 99</u> <u> 3 IN.</u>
GEOLOGIST: M. DALL DEV. METHOD: Submercible EASTING: Elevation / Depth of Top of Elevation / Height of Top of	
Elevation / Depth of Top of Riser: /	
Elevation / Height of Top of	
	<u>X</u>
Surface Casing: /	<u> </u>
I.D. of Surface Casing: 8 IA.	
Ground Elevation = Type of Surface Casing: Steel Cover	
Type of Surface Seal: SAX RETE	
CONCRETE	
I.D. of Riser:	
Type of Riser: PVC, Sch. 40	
Borehole Diameter: 8 IN CH	
	<u>/A</u>
Type of Backfill: PORTLAND CEMENT Type I	
Elevation / Depth of Seal: / /	4 17.
Type of Seal: BENTONITE CHIPS	
Elevation / Depth of Top of Filter Pack: / c	2 FT.
Elevation / Depth of Top of Screen: /	3 FT.
Type of Screen: PVC, ScH. 40	
Slot Size x Length: 0.010 IN. / 10 FT.	
I.D. of Screen:	
Type of Filter Pack: 20 30 GRADE SAND	
Elevation / Depth of Bottom of Screen:	3 FT.
Elevation / Depth of Bottom of	2 ev
Filter Pack: / / Type of Backfill Below Well: N4TNE SOL	3 FT.
	3 FT.

JAX-159-6H-30

PROJECT: NAS CECIL FIEL		PRECISION BORING No .:	003
PROJECT No.: 0039-00		G. PITAK DATE COMPLETED:	07/27/99
SITE: GAS		··	
GEOLOGIST: M. D	ALC DEV. METHOD	D: <u>Submersible</u> EASTING:	
		Elevation / Depth of Top of Riser:	1 3 IN.
		Elevation / Height of Top of	
		Surface Casing:	1 Q FT.
		I.D. of Surface Casing: 8 IN.	
Ground Elevation = Datum:		Type of Surface Casing: Steel Caver	
Datum.		Type of Surface Seal: SAKRETE	
		Concrete	
		— I.D. of Riser: 2 111 CH	
,		Type of Riser: Pvc, Sch. 40	
		Borehole Diameter: 8 INCH	
≡ ≡≡	<u>≡ • </u>	- Elevation / Depth Top of Rock:	NA
		Type of Backfill: PORTLAND	
		Cement Type I	
		- Elevation / Depth of Seal:	114 IA.
	•	- Type of Seal: BENTONITE CHIPS	
	8 8	Elevation / Depth of Top of Filter Pack:	12FT.
		- Elevation / Depth of Top of Screen:	13FT.
		Type of Screen: PVC SCU.40	
		Slot Size x Length: D.010 IN. 10 PT.	
		I.D. of Screen: 2 INCH	
		Type of Filter Pack: 20/30 GRADE SAM	
		Elevation / Depth of Bottom of Screen:	11377.
	 	Elevation / Depth of Bottom of	/ 13 8 ~
		Filter Pack: Type of Backfill Below Well: NATIVE SOIL	/ 13 FT.
		Elevation / Total Depth of Borehole:	1377
	lot to Scale	Elevation / Total Depth of Boreliole.	

JAX-159-64-31

PROJECT	Γ: NAS CECIL FIELD	DRILLING Co.:	PRECISION BORING No .:	004
PROJEC1	•	DRILLER:	G. PITAK DATE COMPLETED:	99/52/10
SITE:	GAS HILL	DRILLING METI		
GEOLOG	IST: M. DALE	DEV. METHOD:	Jubmersible EASTING:	
			Elevation / Depth of Top of Riser:	1 3 IN.
			Elevation / Height of Top of Surface Casing:	1 & FT.
			I.D. of Surface Casing: 8 IN.	
Ground Elev	vation =		Type of Surface Casing: Steel Cover	
Datum:			Type of Surface Seal: SAKRUTE	
			- I.D. of Riser: 2 MCH	
·			Type of Riser: Pvc, Sch. 40	
			Borehole Diameter: 8 INCH	
	<u> = =</u>		- Elevation / Depth Top of Rock:	N, A
			- Type of Backfill: PORTLAND CEMENT Type I	
			Elevation / Depth of Seal:	11814.
			Type of Seal: BENTONITE CHIPS	
			Elevation / Depth of Top of Filter Pack:	1 2 PT.
	<u> </u>		Elevation / Depth of Top of Screen:	13 FT.
			Type of Screen: PVc, ScH. 40	
	■=		Slot Size x Length: 0.010 IN. 10 FT.	
			I.D. of Screen: <u>a INCH</u>	
	<u> </u>		Type of Filter Pack: 20/30 GLADE SAND	
			Elevation / Depth of Bottom of Screen:	113 FT.
			Elevation / Depth of Bottom of Filter Pack:	1 13 FT.
			Type of Backfill Below Well:	
	Not to S	cale	Elevation / Total Depth of Borehole:	/ 13 FT.

WELL No.: MASJ-159-6H-32

PROJECT No.: Dead 0.255 SITE: GAT HILL GEOLOGIST: M. DAVE DEV. METHOD: DEV. METHOD: Paristanic ASSTING: Elevation / Depth of Top of Riser: / 2 in. Type of Surface Casing: Stall Flush AT (Lacking) Type of Surface Casing: Stall Flush AT (Lacking) Type of Riser: Sch. 80 PVC Borehole Diameter: 2.125 in.le.; Type of Backfill: Part Hald Elevation / Depth of Top of Filter Pack: / 1.5 PT. Type of Screen: Sch. 80 PVC Elevation / Depth of Top of Screen: / 2.5 PT. Type of Screen: J. S. FT. Type of Filter Pack: J. J. S. FT. Type of Backfill: O.010 in. x 9 FT. LD. of Screen: J. S. FT. Type of Backfill Below Well: NATIVE SOIL Elevation / Depth of Borehole: / II.S FT.	PROJECT: NA	S SECIL FIELD JAX	DRILLING Co.:	GROUND WATER BORING No.: 1
SITE: GEOLOGIST: DRILLING METHOD: DPT NORTHING:			DRILLER:	
DEV. METHOD: Paristantic Restling Paristantic Restling Paristantic Restling Paristantic Paristant		•	DRILLING MET	1 1 -
Elevation / Depth of Top of Riser: Part Part			DEV. METHOD:	Poristantic A EASTING:
Elevation / Height of Top of Surface Casing:				
Surface Casing: / OFT. I.D. of Surface Casing: Stack Flush AT. (Lacking) Type of Surface Casing: Stack Flush AT. (Lacking) Type of Surface Casing: Stack Flush AT. (Lacking) Type of Surface Seal: Cancrete And 2 x 2 x 4 (2" L.D. of Riser: Sch. & PVC Borehole Diameter: 2.125 inche; Elevation / Depth Top of Rock: M/A Type of Backfill: Portland Elevation / Depth of Seal: / L.P.T. Type of Seal: 30 / 6 S Si Lica Sand Elevation / Depth of Top of Filter Pack: / L.S.F.T. Type of Screen: Sch. & PVC Slot Size x Length: 0.010 in. x 9 FT. I.D. of Screen: J. Sinch Type of Filter Pack: Jo 20 Si Lica Sand Elevation / Depth of Bottom of Screen: / II.S.F.T. Type of Backfill Below Well: NATINE SOLL Elevation / Total Depth of Borehole: / II.S.F.T.				— Elevation / Depth of Top of Riser. / ZIA.
I.D. of Surface Casing: Stall Flush AT (lacking) Type of Surface Casing: Stall Flush AT (lacking) Type of Surface Seal: CANCELO And 2 x 2 x 4 (" LD. of Riser: Sch. 80 PV C. Borehole Diameter: 2.125 inches Portland Languary Lan				
Type of Surface Casing: Steal Flush AT. (Locking) Type of Surface Seal: Cancrete And 2' x 2' x 6" I.D. of Riser: Sch. 80 pv c Borehole Diameter: 2.125 inches Elevation / Depth of Rock: N/A Type of Backfill: Part And Elevation / Depth of Seal: / 1 FT. Type of Seal: 30 / 55 i lica And Elevation / Depth of Top of Filter Pack: / 25 pt. Elevation / Depth of Top of Screen: / 25 pt. Type of Screen: Sch. 80 pv c Elevation / Depth of Top of Filter Pack: / 1.5 pt. Elevation / Depth of Top of Screen: / 25 pt. Type of Screen: Sch. 80 pv c Elevation / Depth of Bottom of Screen: / 1.5 pt. Elevation / Depth of Bottom of Screen: / 11.5 pt. Elevation / Depth of Bottom of Screen: / 11.5 pt. Elevation / Depth of Bottom of Screen: / 11.5 pt. Elevation / Depth of Bottom of Filter Pack: / 11.5 pt. Elevation / Depth of Bottom of Screen: / 11.5 pt. Elevation / Depth of Bottom of Filter Pack: / 11.5 pt. Elevation / Depth of Bottom of Filter Pack: / 11.5 pt. Elevation / Total Depth of Borehole: / 11.5 pt.				Surface Casing: / QFT,
Type of Surface Seal: 2' x 2' x 16" I.D. of Riser: Sch. 80 PVC Borehole Diameter: 2.125 inches Type of Backfill: General Type of Backfill: General Type of Seal: Type of Seal: Type of Seal: Type of Seal: Type of Screen: Type of Filter Pack: Type of Filter Pack: LD. of Screen: Type of Filter Pack: Type of Backfill Below Well: NATINE SOIL Elevation / Depth of Borehole: 1.1.5 FT.				I.D. of Surface Casing: 81nch
Type of Surface Seal: 2	Ground Elevation =			Type of Surface Casing: Steel Flush MT (Locking)
III	Datum:		+	- Type of Surface Seal: CONCleta Nad
Type of Riser: Borehole Diameter: 2.125 inches Elevation / Depth Top of Rock: Type of Backfill: Type of Backfill: Portland Languat Type 1 Elevation / Depth of Seal: Type of Soreen: Type of Screen: Type of Screen: Sch. 80 pvc Slot Size x Length: D.010 in. x 9 ft. I.D. of Screen: Type of Filter Pack: Type of Filter Pack: D.010 in. x 9 ft. Type of Filter Pack: Type of Bottom of Screen: Type of Bottom of Screen: Type of Backfill Below Well: NATINE SOIL Elevation / Total Depth of Borehole: / 11.5 ft.				
Borehole Diameter: 2.125 incles Elevation / Depth Top of Rock: N/A Type of Backfill: Portland Umput Type 1 Elevation / Depth of Seal: / 1 PT: Type of Seal: 30/65 \$ i lica Jand Elevation / Depth of Top of Filter Pack: / 25 PT: Type of Screen: Sch. 80 PVC Slot Size x Length: 0.010 in. x 9 PT. I.D. of Screen: 8.5 inch Type of Filter Pack: 20/30 \$ i lica Jand Elevation / Depth of Bottom of Screen: / 11.5 PT. Elevation / Depth of Bottom of Screen: / 11.5 PT. Type of Backfill Below Well: NATING Soil Elevation / Total Depth of Borehole: / 11.5 FT.	-			- I.D. of Riser: 0.5 inch
Elevation / Depth Top of Rock: Type of Backfill: Cambut Type 1 Elevation / Depth of Seal: Type of Seal: Solves Silves Jand Elevation / Depth of Top of Filter Pack: Type of Screen: Solves Seal: Type of Screen: Solves Solves Slot Size x Length: 1.D. of Screen: Type of Filter Pack: Type of Filter Pack: Depth of Bottom of Screen: Type of Backfill Below Well: NATIVE Solu Elevation / Total Depth of Borehole: / 11.5 FT.	·			Type of Riser: Sch. 80 PVC
Type of Backfill: Portland				Borehole Diameter: 2.125 inches
Type of Backfill: Portland		Ⅲ≡Ⅲ≡		- Elevation / Depth Top of Rock:
Elevation / Depth of Seal: Type of Seal: 20/65 Silica Jand Elevation / Depth of Top of Filter Pack: I J. S. FT. Elevation / Depth of Top of Screen: Type of Screen: Sch. 80 PVC Slot Size x Length: I.D. of Screen: Type of Filter Pack: Type of Filter Pack: Elevation / Depth of Bottom of Screen: Elevation / Depth of Bottom of Filter Pack: Type of Backfill Below Well: NATIVE SOIL Elevation / Total Depth of Borehole: / II.S. FT.				
Type of Seal: 30 65 Silica Jand				Coment Type 1
Elevation / Depth of Top of Filter Pack: / 1.5 FT. Elevation / Depth of Top of Screen: / 2.5 FT. Type of Screen: Sch. 80 PVC Slot Size x Length: 0.010 in. x 9 FT. I.D. of Screen: 8.5 in.d. Type of Filter Pack: 20 30 Silica Sand Elevation / Depth of Bottom of Screen: / 11.5 FT. Type of Backfill Below Well: NATING SOIL Elevation / Total Depth of Borehole: / 11.5 FT.				Elevation / Depth of Seal: / 1 PT:
Elevation / Depth of Top of Screen: Type of Screen: Sch. 80 PVC Slot Size x Length: O.010 in. x 9 FT. I.D. of Screen: Type of Filter Pack: Depth of Bottom of Screen: Elevation / Depth of Bottom of Filter Pack: Type of Backfill Below Well: NATIVE SOIL Elevation / Total Depth of Borehole: / 11.5 FT.				Type of Seal: 30/65 Silica SANd
Type of Screen: Sch. 80 PVC Slot Size x Length: 0.010 m. x 9 FT. I.D. of Screen: 8.5 in L Type of Filter Pack: 20 30 Silva Jand Elevation / Depth of Bottom of Screen: / 11.5 FT. Type of Backfill Below Well: NATINE SolL Elevation / Total Depth of Borehole: / 11.5 FT.		88	8	Elevation / Depth of Top of Filter Pack: / 1,5 FT.
Slot Size x Length: 0.010 m. x9fT. I.D. of Screen: 2.5 in J. Type of Filter Pack: 20 30 Silica SAND Elevation / Depth of Bottom of Screen: / 11.5 ft. Type of Backfill Below Well: NATING SOIL Elevation / Total Depth of Borehole: / 11.5 ft.		<u> </u>		
I.D. of Screen: Type of Filter Pack: Elevation / Depth of Bottom of Filter Pack: Type of Backfill Below Well: NATING SOIL Elevation / Total Depth of Borehole: 11.5 FT. 11.5 FT.				Type of Screen: Sch. 80 PVC
Type of Filter Pack: 2030 Silica SAnd Elevation / Depth of Bottom of Screen: / 11.5 PT. Elevation / Depth of Bottom of Filter Pack: / 11.5 FT. Type of Backfill Below Well: NATING SOLL Elevation / Total Depth of Borehole: / 11.5 FT.				Slot Size x Length: 0.010 in. x 9 FT.
Elevation / Depth of Bottom of Screen: II.5 PT				I.D. of Screen: 8.5inch
Elevation / Depth of Bottom of Filter Pack: / //.S FT. Type of Backfill Below Well: NATINE SOLL Elevation / Total Depth of Borehole: / //.S FT.	·			Type of Filter Pack: 20/30 Silica SANd
Filter Pack: / //.S FT. Type of Backfill Below Well: NATINE SOIL Elevation / Total Depth of Borehole: / //.S FT.				Elevation / Depth of Bottom of Screen: / 11.5 M.
Type of Backfill Below Well: NATIVE SOL Elevation / Total Depth of Borehole: / II.S FT.				·
Elevation / Total Depth of Borehole: / II. S FT.				Type of Backfill Below Well:
		Not to Sc	ale	Elevation / Total Depth of Borehole: / II, S FT.

WELL No .: NAST- 159-64-33

PROJEC	T: NAS GECIL FIELD JAY	DRILLING Co.:	GROUND WATER BORING No.:	_ \
PROJEC	TNo.: 0030 0255	DRILLER:	C. Bucher DATE COMPLETED: 08/30/90	3
SITE:	GAS HILL	_ DRILLING METH		-
GEOLOG	SIST: M. DAVE	DEV. METHOD:	Paristate EASTING:	
			- Elevation / Depth of Top of Riser: / JIN.	-
			- Elevation / Height of Top of Surface Casing: / Ø FT,	_
			I.D. of Surface Casing: 8 inch	
Ground Ele	evation =		Type of Surface Casing: Steel Flush MT. (Locking)	
Datum:			Type of Surface Seal: Concrete pad 2'x 2'x 6"	
			- I.D. of Riser: 0.5 inch	
			Type of Riser: Sch. 80 PVC	1
			Borehole Diameter: 2.125 inches	
	 ≡ 	= 	- Elevation / Depth Top of Rock:	-
			Type of Backfill: Portland Cenent Type I	
		-	Elevation / Depth of Seal: / 1 FT.	<u>. </u>
			Type of Seal: 30/65 Silica Javd	
			Elevation / Depth of Top of Filter Pack: / 1.5 P	<u>T.</u>
			Elevation / Depth of Top of Screen: / 2.5 @	<u>F</u> T.
		▼	Type of Screen: Sch. 80 PVC	
			Slot Size x Length: 0.010 n. x 9 FT.	
			I.D. of Screen: 0.5 inch	
			Type of Filter Pack: 20 30 Silica Sand	
			Elevation / Depth of Bottom of Screen: / //. S p	1
			Elevation / Depth of Bottom of Filter Pack: / // S P	<u>行</u> 、
			Type of Backfill Below Well:	
	Not to S	Scale	Elevation / Total Depth of Borehole: / 11. S p	·T.

WELL No .: NASJ-159-64-34

PROJECT: NAS SECIL FIELD JAX	DRILLING Co.:	GROUND WATER BORING No.: 3
PROJECT No.: 9030 0255	DRILLER:	C. Buchel DATE COMPLETED: 08/30/99
SITE: GAS HILL	DRILLING METH	
GEOLOGIST: M. DAVE	DEV. METHOD:	Peristantic EASTING:
Γ		- Elevation / Depth of Top of Riser: / 2 IN.
		- Elevation / Height of Top of Surface Casing: / Ø FT.
		I.D. of Surface Casing: 8 Inch
Ground Elevation =		Type of Surface Casing: Steel Flush MT. (Locking)
Datum:		Type of Surface Seal: Concrete and
		I.D. of Riser: 0.5 inch
		Type of Riser: Sch. 80 PVC
		Borehole Diameter: 2.125 inch
= =		Elevation / Depth Top of Rock: N/A
		Type of Backfill: PURTLAND Cement Type I
		Elevation / Depth of Seal: / 1 FT.
	·	Type of Seal: 30/65 Silica Jand
8	<u> </u>	Elevation / Depth of Top of Filter Pack: / 2 FT.
		Elevation / Depth of Top of Screen: / 3.5 FT.
		Type of Screen: Sch. 80 PVC
		Slot Size x Length: 0.010 IN K 9 FT.
		I.D. of Screen: 0.5 いん
	·	Type of Filter Pack: 20 30 Silica Jand
	1	Elevation / Depth of Bottom of Screen: / 12.5 FT.
		Elevation / Depth of Bottom of Filter Pack: / 12.5 FT.
		Type of Backfill Below Well: NATNE SOIL
Not to Sc	aleE	Elevation / Total Depth of Borehole: / 12.5 FT.

WELL No.: NAST-159-GH-35

PROJECT: NAS GECIL FIELD JAX	DRILLING Co.:	GROUND WATER	BORING No.:	41 m
PROJECT No.: 2030 0255	DRILLER:	C. Bucher	DATE COMPLET	ED: 0 <u>8/31/99</u>
SITE: GAS HILL	DRILLING METHOD:	DPT	NORTHING:	
GEOLOGIST: M. DAVE	DEV. METHOD:	Paristantic Punj	EASTING:	
Γ	Elevat	tion / Depth of Top of	f Riser:	1 2 IN.
	Elevat	ion / Height of Top o Surfac	of e Casing:	1 Q FT.
	1 1	Surface Casing:	· 8 Inch	
Ground Elevation =	Туре о	of Surface Casing: <u>S</u>	teel Flush MT.	(locking)
Datum:		of Surface Seal: <u>ん</u> ×2 ¹ × ん"	oncrete 1AD	
	I.D. of		0.5 in.	
	Type o	•	ch. 80 PVC	
	Boreho	le Diameter:	2 /8 Wch	
	Elevation	on / Depth Top of Ro	ock:	NA
	/// I 1''A	f Backfill: rent Tupe I	Portand	
		on / Depth of Seal:		1 10.5 pt
	Type of	Seal:	solbs silia	SANd
88	Elevation	on / Depth of Top of	Filter Pack:	<u> 1 /2.5</u> fr
	Elevatio	on / Depth of Top of		1 15.5 pt
	Type of	Screen:	Sch. 80 PVC	
	Slot Size	e x Length:	0.010 IN.X 9	PT
	I.D. of S	Screen:	0.5 IN.	
	Type of	Filter Pack:	20/30 Silica	Sarid 11
	Elevatio	n / Depth of Bottom	n of Screen:	1 24.5F
		n / Depth of Bottom	Filter Pack:	1 24.5 FT
	.9 1 **-	Backfill Below Well V	l: 	
Not to Sca		n / Total Depth of B	Borehole:	1 24.5 FT

MONITORING WELL SHEET

WELL No .: NAST-159-GH-36

BBO IECT: NAS	SECIL FIELD JAX	DRILLING Co.:	GROUND WATER BORING No.: 5
	9930 0255	DRILLER:	C. Buchter Date completed: 08/31/99
PROJECT No.:	GAS HILL	DRILLING MET	
SITE:	M. DAVE	DEV. METHOD	
GEOLOGIST:	The proc	DEV. METHOD	: <u>Peristante Imp</u> EASTING:
	Г		— Elevation / Depth of Top of Riser: / 2 IN.
			— Elevation / Height of Top of
			Surface Casing: / Ø F
			I.D. of Surface Casing:
Ground Elevation =			Type of Surface Casing: Steel Flush MT. (Locking)
Datum:		+	
			Type of Surface Seal: Concrete PAd 2' × 2' × 6"
			- I.D. of Riser: 0.5 INCh
			Type of Riser: Sun 80 NC
			Borehole Diameter: $\frac{2.125}{10.5}$
			- Elevation / Depth Top of Rock: ₩/A
			•
			- Type of Backfill: Portland Cenert Type I
			01
			Elevation / Depth of Seal: / 10.5 pr
			Type of Seal: 30/65 Silica And
			Elevation / Depth of Top of Filter Pack: / 13.5 fr
	<u> </u>		Elevation / Depth of Top of Screen: / 16.5 FT
			Type of Screen: Sun. 80 PVC
			Slot Size x Length: 0.010 IN. X 9 FT.
			I.D. of Screen: 0.5 Inch
			Type of Filter Pack: 20/30 Silica Sand
			Elevation / Depth of Bottom of Screen: 1 25,5 FT
		8	Elevation / Depth of Bottom of Screen: $\frac{125.5_{\text{FT}}}{125.5_{\text{FT}}}$
			Type of Backfill Below Well:
			NATIVE SOIL
	Net to C		Elevation / Total Depth of Borehole: / 25.5 FT
	Not to Sc	aie	

WELL No.: NAST-159-GH-37

DROJECT: NAS	SECIL FIELD JAX	DRILLING Co.:	GROUND WATER BORING No.:
PROJECT No.:	2030 0255	DRILLER:	C. Bucher DATE COMPLETED: 08/31/99
SITE:	GAS HILL	DRILLING METH	
GEOLOGIST:	M. DAVE	DEV. METHOD:	Peristantic EASTING:
GEOLOGIOT.			
	Г		- Elevation / Depth of Top of Riser: / 2/N.
			- Elevation / Height of Top of
			Surface Casing: / 1/2 PT
	·		I.D. of Surface Casing:
Ground Elevation =			Type of Surface Casing: Steel Flush MT. (Lock in 5)
Datum:			, · · · · · · · · · · · · · · · · · · ·
			Type of Surface Seal: Concrete PAd
			J×2×6"
			- I.D. of Riser: 0.5 INCh
			Type of Riser: Sch. 80 PVC
			Borehole Diameter: 2.125 inches
	 = =		Elevation / Depth Top of Rock: N/A
	·] = =		Type of Backfill: Portland
			Type of Backfill: <u>Portland</u> Cement Tuse I
			7~
			· · · · · · · · · · · · · · · · · · ·
			Type of Seal: 30/65 Silica Jand
		8	Elevation / Depth of Top of Filter Pack: / (0 FT.
	<u> </u>	*	Elevation / Depth of Top of Screen: / 12 FT.
		&	Type of Screen: Sch. 80 PVC
			Slot Size x Length: 0.010 (N. X 9 FT.
			I.D. of Screen: 0,5 IN.
·	₩=		Type of Filter Pack: 20/20 Silva Jand
			Elevation / Depth of Bottom of Screen: 1 21 FT.
			Elevation / Depth of Bottom of
			Filter Pack: / 2/ FT. Type of Backfill Below Well:
			NATIVE SOIL
			Elevation / Total Depth of Borehole: / 21 FT.
	Not to Sc	ale	

NASJ-159-GH-38

PROJECT: NAS	SECIL FIELD JAX	DRILLING Co.:	GROUND WATER BORING No.:	<u>_7</u>
PROJECT No.:	2030 0255	DRILLER:	C. Bucher DATE COMPLETED:	09/01/99
SITE:	GAS HILL	DRILLING METH		
GEOLOGIST:	M. DAVE	DEV. METHOD:	Peristante Purposting:	
			- Elevation / Depth of Top of Riser:	1 21N.
			 Elevation / Height of Top of Surface Casing: 	/ & FT.
			I.D. of Surface Casing:	
Ground Elevation =			Type of Surface Casing: Steel Flush MT. (Lo	cking)
Datum:			Type of Surface Seal: Concrete pad	
			- I.D. of Riser: 0.5 inch	
			Type of Riser: Sch. 50 PVC	
			Borehole Diameter: 2.125 in Ly	
	= =	≡	Elevation / Depth Top of Rock:	MA
			Type of Backfill: Portland Coment Type I	•
			Elevation / Depth of Seal:	, 9 FT.
			Type of Seal: 30/65 Silica Sand	
	88		Elevation / Depth of Top of Filter Pack:	/ 11 FT.
			Elevation / Depth of Top of Screen:	1 13FT.
1			Type of Screen: Sch. 80 NC	
			Slot Size x Length: <u>U.010 (N. X 9F</u> T.	
			I.D. of Screen: U.S INCh	
	<u> </u>		Type of Filter Pack: 20/70 Silica Smid	
			Elevation / Depth of Bottom of Screen:	1 22 FT.
			Elevation / Depth of Bottom of Filter Pack:	1 22 FT.
			Type of Backfill Below Well: NATIVE SOIL	
	Not to Sc	ale	Elevation / Total Depth of Borehole:	1 22 FT.
				

WELL No.: NAST-159-64-39

PROJECT: NAS	SECIL FIELD JAX	DRILLING Co.:	GROUND WATER BORING No.:
PROJECT No.:	5030 0252	DRILLER:	C. Bucher DATE COMPLETED: 09/01/99
SITE:	GAS HILL	DRILLING METH	HOD: DPT NORTHING:
GEOLOGIST:	M. DAVE	DEV. METHOD:	Paristantic EASTING:
			- Elevation / Depth of Top of Riser: / 21N.
			Elevation / Height of Top of
			- Elevation / Height of Top of Surface Casing: / ØFT
			I.D. of Surface Casing:
			Type of Surface Casing: Steel Flush MT (Locking)
Ground Elevation = Datum:		1	Type of Surface Casing: Itel Flush MT (Locking)
			Type of Surface Seal: Concrete 1Ad 2 x 2 x 6"
			I.D. of Riser: 0,5 mch
			Type of Riser: Sch. & PVC
			Borehole Diameter: 2125 Inches
	= =		Elevation / Depth Top of Rock:
			Type of Backfill: Port And
			Cement Type I
			Elevation / Depth of Seal: / 10 FT.
·			Type of Seal: 30/65 Silica JAnd
		8	Elevation / Depth of Top of Filter Pack: / 12 FT.
	<u> </u>		Elevation / Depth of Top of Screen: / 14 FT.
		<u></u>	Type of Screen: Sch. So PVC
			Slot Size x Length: 0.010 IN, x 9 FT.
			I.D. of Screen: 0.5 inch
			Type of Filter Pack: 20/30 Silica Sand
			Elevation / Depth of Bottom of Screen: 1 23 FT.
			Elevation / Depth of Bottom of Filter Pack: / 23 PT
			Filter Pack: / 23 FT. Type of Backfill Below Well: NATIVE SOIL
	Not to Sc		Elevation / Total Depth of Borehole: / 33 FT.
			

Well Designation: $IXX-159-GH-28$	Site Geologist: MERVIN W DALK
Site Name: GAS HILL NAS JAX	Drilling Company: PRECISION DEPLLING
Date Installed: 07/27/99 AND 07/28 26/99 MD	Driller: GREG PIJAK
Project Name: GAS HILL SITE ASSESSMENT	Project Number: NOZSS

Material	Brand/Description	Source/Supplier	Sample
Well Casing PRIMARY	DVA School & 40 2 10 5 11 (30er	(A.1.)	Collected ?
Well Screen	DVC Shad to 40 2 10. BIAN.	14+ IANTIC Orilling, PAM BIH., FL	NO
End Cap	DV/2 S. 1/2 2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1	1010/N SLOTS, some supplied	No
Drilling Fluid	PVC Schedule 40, 2 IN. DIAM. (30FT. PVC Schedule 40, 2 IN DIAM. JOFT., O. PVC Sch. 40 well point, 1.5 IN.	SAME Supplier	NO
Drilling Fluid Additives	MATER	MASTIX	NO
Backfill Material	tigh yield bentonite powder	WYO-BEN, INC BILLINGS MT	No
Annular Filter Pack	20/30 Standard sand		~
Bentonite Seal	ENVIROPLUG MEDIUM CHIPS	Standard Sanda Silica ConTAX, Pl	NO
Annular Grout	PORTLAND CEMENT TOPILI / HIGH VIELD	THOMAS WE OF U.S. (2)	1/20
Surface Cement	SAKPLETE CONFRETE	DUV. //VI	Мь
Protective Casing	Steel Cover 8 IN. I.D.	D.R. BONSAL, CINN., OH.	No
Paint	None	72110	No
Rod Lubricant	Myle		
Compressor Oil	None		
Soundary Casing	PVC, Sch. 40, 6 IN. DIAM., 15 FT.	Atlantic Drilling, PARA But, Fl.	70
V V	, and the second	, , , , , , , , , , , , , , , , , , , ,	

To the best of my knowledge, I certify:	haţ	the above described ma	naterials were used during installation of this monitoring wel
			West and the state of the monitoring wes

Signature of Site Geologist:_

Well Designation: JAX-GH-29	Site Geologist: MIER VIN DAVE
Site Name: GAS HILL, NAS JAX	Drilling Company: PRKCision Drilling
Date Installed:07/27 //99	Driller: Greg Pijax
Project Name: GAS HILL SITE ASSESSMENT	Project Number: W6255,

Material	Brand/Description	Source/Supplier	Sample Collected ?
Well Casing	PUC Schedule 40, 3 FT. 2 IN DIA	Atlanto Mill: Do BIC.	No.
Well Screen	PUC Sch. 40 5/0+ 5/4e 0.010" 10FT	M. SAME ASSABAR	·
End Cap BOTTEM	PVC Sch. 40 well pt. 1.5"	· · · · · · · · · · · · · · · · · · ·	<i>N</i> o
Drilling Fluid	those water to charge well	NA STAX	10
Drilling Fluid Additives	vone	4	<i>₩</i> 0
Backfill Material	None		
Annular Filter Pack	20/30 grade sand	Standard Sand + Silica JAX, 82	
Bentonite Seal	EMUIROPLUG MERUM (Chips)	WYO BEN INC. BILLINGS MT	μο μο
Annular Grout	PORTLAND Coment Type I	TARMAC MEDLEY, FL	
Surface Cement	SAKASTE CONCRETE	W.R. BONSM, CINN, OH.	<i>No</i> ∾∘
Protective Casing	Steel Cover 8 IN. LD.	PEMCO CION., OA.	NO
Paint	Mone		
Rod Lubricant	Roha		
Compressor Oil	MA		
			-

To the best of my knowledge, I certify that the above described materials were used during installation of this monitoring well.

Signature of Site Geologist: Won W. Dole

159

Well Designation: IAX-GH-30	Site Geologist: MERVIN DALE
Site Name: CAC HULL LAC TWW	
Date Installed:07/27/99	Drilling Company: <u>Precision</u> Driccing Driller: Grea Pitak
Project Name: GAS HILL SITE ASSESSMENT	Project Number: NO255

Material	Brand/Description	Source/Supplier	Sample
Well Casing	PVC Schedule 40, 3FT 2 IN DIAM	Arlanda	Collected ?
Well Screen	PVC Schedule 40, 3fT. 2 IN DIAM. PVC Sch. 40, slot size 0.010, 210.2	Atlantic Drilling, Porm Bet, FC	NO
End Cap	Pre Sch. 40 well anit (50)	7.)	No
Drilling Fluid	Presch. 40 well point 1.5 is.		NO
Drilling Fluid Additives	NOVE WELL	NASTAX	
Backfill Material	none		
Annular Filter Pack	20/30 grade sand		`
Bentonite Seal	ENVIROPLUG MEDIUM (chips)	Standard Sand + Silica to, TIX, R	No
Annular Grout	PORTLAND COMENT Type I	WYO-BEN INC. B. IImgs MT	<i>∨</i> 0
Surface Cement	BAKRete concrete	W.R. BONSAL, CINN, OH.	NO
Protective Casing	Steel Cover 8 IN. 1.D.	PEMOD PEMOD	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Paint	none	161100	No
Rod Lubricant	une		
Compressor Oil	Non		

To the best of my knowledge,	I certify that the above	described n	naterials were used during installation of this monitoring well	l
	Meum D.			•
Signature of Site Geologist:	10/eum D.	Dole		

Well Designation: Jax-159-GH-31					
Site Name:	GAS	HILL	NAS	JHX	
Date Installed:		′۲9	127/99		
Project Name:	GAC	401	5/76	ACCEC	CM

Site Geologist: MERVIN DALE

Drilling Company: PRECISION DRILLING

Driller: Greg Pijak

Project Number: NOZSS

Material Brand/Description		Source/Supplier	Sample
***			Collected ?
Well Casing	PVC Sch. 40, 3 FT., 2 IN. DIAM.	Atlantic Drilling, Parm Bed, Fl	
Well Screen	Pue Sch. 40 slotsize 0.010, 10 21.	// /	
End Cap	PVC Sdn. 40, well pt., 1.5 in.		NO
Drilling Fluid	water to charge well	SAME	~0
Drilling Fluid Additives	Nove	NASTAX	NO
Backfill Material	non e		
Annular Filter Pack	20/30 grade SAND	Stal failed in TAX 5.	
Bentonite Seal	ENVIROPLUG Medium (chips)	Std. SAND & Silica Co., JAX FL WYD. BEN, INC., Billings ONT	no
Annular Grout	PORTLAND COMPANT Type I		No
Surface Cement	SAKRATE CONCRETE	TARMAC, MEDINY, FL W.R. BONSALCO., CINN., OH.	סע
Protective Casing	Steel Cover 8 In. 1.D.	Pemco	No
Paint	none		No
Rod Lubricant	none		
Compressor Oil	Mone		$\overline{}$
······································			

To the best of my knowledge, I certify that the above described materials were used during installation of this monitoring well.

Signature of Site Geologist:

Well Designation: NAST-159-6H-32	Site Geologist: MERVIN DAVE / JASON Mc CAN
Site Name: GAS HILL NAS JACKSONVILLE	
Date Installed:	Driller: Charles Buchel
Project Name: SAR ADDITION	Project Number: NQ255. FBb. Q50. 225

Material	Brand/Description	Source/Supplier	Sample
Well Casing	Sch. 80 pvc		Collected ?
Well Screen	Pre-PACK W/20/30 SAND Sch. 80 PVC INNER, Stam	Geoprobe Systems, 607 BANNEY St. SANNAS	NO
End Cap	Sch. 80 PC (~2 in long)	1	NO
Drilling Fluid	Joh. 80 PC (~2 in. long)	Geoprobe Systems	NO
Drilling Fluid Additives	me		
Backfill Material	Mone		
Annular Filter Pack	20/30 Silica SAND (pre-PACK & SOLB. BAGS)		
Bentonite Seal Sere	30/65 Silica JANA	O TONO /AU JIMO	NO
Annular Grout	PORTLAND Coment Type I (94 LB. BAGS)	Standard SAND TACKSONVILLE FL	~ 0
Surface Cement	QUIKRETE (80 LB BAGS)	HOWAM TAMPA, FL QUIKLET COMPANIES ASTAUT CO	NO
Protective Casing	PEMCO 8 IN. DIAM LOCKING WELL COVER	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	No
Paint	None	(FLUSH MT.) PEMCB, HOLLYWOOD, FL	NO
Rod Lubricant	nons		
Compressor Oil	None		
			······································

To the best of my knowledge, I certify that the above described materials were used during installation of this monitoring well.

Signature of Site Geologist:____

Well Designation: NAST-159-6H-33	Site Geologist: MEAVIN DAYS /TAFON MC CANO
Site Name: CAS Hall JAC Track IV	= TITION MICCANI
Date Installed: 08/30/49	Drilling Company: GRound weter Protection
Project Name: SAR Addendum	Driller: Charles Buchel
	Project Number: NQ255, FRD N50 225

Material	Brand/Description	Source/Supplier	Sample
Well Casing	Sch. 80 PVC		Collected ?
Well Screen	Pro-Park 1/20/20 to 1/2 (1 8.21/2 5)	Geoprobe Systems, 607 BANNEYST. SANNAS	NO
End Cap	Pre-Pack W/20/20 SAND Sch. 80 PVC INNER, Stan Sch. 80 PVC (~2 IN JONE)	Jess Steelonter Geoprobe Systems 67401	NO
Drilling Fluid	Joh. 80 NC (~2 in. long)	Geoprobe Systems	NO
Drilling Fluid Additives	none	,	
Backfill Material	None		
Annular Filter Pack	20/30 Silica SAND (pre-PACK & SOLB. BAGS		
Bentonite Seal Speed	30/65 Silica SAND		NO
Annular Grout	PORTLAND (emont Type I (9418 BAGS)	Standard SAND JACKSONVILLE FL	70
Surface Cement	Dukrete (801B. BAGS)	HOLNAM, TAMPA, PZ	49
Protective Casing	8 1H. DIAM, broking Well Lover/Fla	BUKRETE COS. Athruta CA	NO
Paint	None None	short) Penco Hollywood, FL	NO
Rod Lubricant	vous		
Compressor Oil	none		
			 · ·- ·- ·- ·- ·- ·- ·

To the best of my knowledge, I certify that the above described materials were used during installation of this monitoring well.

Signature of Site Geologist:

Well Designation: NAST-159-6H-34	Site Geologist: MENIN DAYS / TARON MCCAN
Site Name: CAS ILLU JAC TELLE	THE THEOLOGICAL PROPERTY OF THE CALLED
Date Installed: 08/30/99	Drilling Company: GRound notes Protection
Project Name: SAL Abderdum	Driller: Charles Buchel
- odorawii (Project Number: NA255. FBb. 850 225

Material	Brand/Description	Source/Supplier	Sample
Well Casing	Sch. 80 PVC		Collected ?
Well Screen	Pro-Prox 1/20/20 6 14 5 1 8 21/2 5 5 1	(Leoprobe Systems, 607 BANNEYST. JANNA)	NO
End Cap	Pre-Pack W/20/30 SAND Sch. 80 PVC INNER, Stan	Wess Steelonter Geoprobe Systems 67401	NO
Drilling Fluid	Sch. 80 NC (~2 M. long)	Geoprobe Systems	No
Drilling Fluid Additives	me		
Backfill Material	None		
Annular Filter Pack	20/30 Silica SAND (pre-PACK & SOLB. BAGS		
Bentonite Seal Toro	30/65 Silica SAND		NO
Annular Grout	POTETURNO Coment Typo I A4LB. Bass	Standard SAND, JACKSONVILLE FL	70
Surface Cement	QUIKRETE (80 LB, BAGS)		<u>~b</u>
Protective Casing	8 in DiAm Locking (Such (Flush mt.)	Quikrete Composies, Atlanta, GA	No
Paint	None (1000)	Panco Hollywood, FL	M
Rod Lubricant	none		
Compressor Oil	none		
			
			<u></u>

To the best of my knowledge	e, I certify that the	above described r	naterials were used	during installation of	of this monitoring well
	n// .	d. Sle	1 0	1,186	well
Signature of Site Geologist:_	/1/ewn	W. Sde	Jusus J.	w/ c www	

Well Designation: NAST-159-GH-35	Site Geologist: MEAVIN DANK
Site Name: CAS Ilai 1/05 Taxas In	
Date Installed: 08/31/99	Drilling Company: GRound notes Protection
Project Name: SAR Adderdum	Driller: Charles Buchel
J. Mada and	Project Number: N&255. FBb. &50. 225

Material	Brand/Description	Source/Supplier	Sample
Well Casing	Sch. 80 PVC		Collected ?
Well Screen	Pro-Park 1/20/20 Co 14 C 1 8021/2 11 C 1	Ceoprobe Systems, 607 Barney St. SALNAS	NO
End Cap	Pre-PACK W/20/20 SAND Sch. 80 PVC INNER, Stan Sch. 80 PVC (N2 IN. 1005)		NO
Drilling Fluid	Joh. 80 Mc (~2 M. long)	Geoprobe Systems	NO
Drilling Fluid Additives	none	,	
Backfill Material	None		
Annular Filter Pack	20/30 Silica SAND (pre-PACK & SOLB BAGS		
Bentonite Seal Sono	30/65 Silica Jand Pre-pack & SOLB. BAgs	EI A I C STANGERO STANG	NO
Annular Grout	PORTUAND CEMENT Type I (9418. Bags)	Standard SAND JACKSONVILLE FL	~0
Surface Cement	Quiknete (80 LB. Bags)		№ 0
Protective Casing	8 IN DIAM Steel Locking Cover (flush)	QUIKNETE COMP'S. A+ lasta GA	_ NO
Paint	None None	Penco Hollywood, FL.	~0
Rod Lubricant	none		<u> </u>
Compressor Oil	none		
			·
			

To the best of my knowledge, I	certify that the	above d	escribed	materials were used	during installation of this	monitoring well
--------------------------------	------------------	---------	----------	---------------------	-----------------------------	-----------------

Signature of Site Geologist: //wm W. & &

Well Designation: NAST-159-GH-36	Site Geologist: MERVIN DATE
Site Name: CAS MALL MASS TEACH IN	
Date Installed: 08/21/99	Drilling Company: GRound water Protection
Project Name: SAK Addendum	Driller: Charles Bucher
The state of the s	Project Number: NQ255. FBb. Q50, 225

Material	Brand/Description	Source/Supplier	Sample
Well Casing	Sch. 80 PVC		Collected ?
Well Screen	Pre-Park 1/20/20 for H 5 1 51.21/2 1 51.21/2	Geographe Systems, 607 BARNEY St. SAUNAS	NO
End Cap	Pre-Pack w/20/30 SAND Sch. 80 PVC INNER, Star Sch. 80 PVC (~2 IN. long)	Mess Steelouter Geoprobe Systems 67401	NO
Drilling Fluid	Joh. 80 NC (2 M. long)	Geoprobe Systems	NO
Drilling Fluid Additives	none		
Backfill Material	none		<u>.</u>
Annular Filter Pack	20/30 Silica SAND (pre-PACK & SOLB. BAGS		
Bentonite Seal Sere	30/65 Silica Sand		40
Annular Grout	PORTLAND Cement Type I (9418. Bear)	Standard SAND JACKENVILLE FL	70
Surface Cement	QUIKnete (80 B. 1925)	7,70	NO
Protective Casing	8 M. DIAM. Steel Flush MT. Lacking Corel	QUIKNETE Comparies Atlanta, GA	<i>N</i> 0
Paint	None None	PEMCO Hollywood, FL	No
Rod Lubricant	none		
Compressor Oil	None		

To the best of my knowledge, I	certify that the	above de	scribed m	naterials were used during installation of this monitoring wel
	$\Omega_h//$	/ \		The state of the s

Signature of Site Geologist:_

Well Designation: NAST-159-6H-37	Site Geologist: MERVIN DAGE
Site Name: GAS HILL NAS JACKSONVILLE	
Date installed: $08/31/99$	Drilling Company: GRound water Protection
Project Name: SAR Addordum	Driller: Charles Buchel
371127124074277	Project Number: NA2SS. FBb. QSO. 22S

Material	Brand/Description	Source/Supplier	Sample
Well Casing	Sch. 80 pvc		Collected ?
Well Screen	Per-Park 1/20/20 for 1/2 [5.21/2 5]	(Leoprobe Systems, 607 BANNEYST. SANNAS	No
End Cap	Pre-Pack W/20/30 SAND Sch. 80 PVC INNER, Star Sch. 80 PVC (~2 IN. long)	Mess Steelonter Geoprobe Systems 67401	NO
Drilling Fluid	Joh. 80 PVC (2 M. long)	Geoprobe Systems	No
Drilling Fluid Additives	more		
Backfill Material	None		<u> </u>
Annular Filter Pack	20/30 Silica SAND (pre-PACK & SOLB. BAG		
Bentonite Seal Spred	30/65 Silica Jand		NO
Annular Grout	PORTLAND Cement Type I (9418. Bags	Standard SAND, JACKSONVILLE FL	~ 0
Surface Cement	QUIKNOTE (80 LB. BAGS)		No
Protective Casing	8 IN. DIAM Steel Flush MT. Locking Cover	Quikrate companies, A+Ranta CA	ملاء
Paint	None None	PEMCO Hollywood, FL	<u> </u>
Rod Lubricant	none		
Compressor Oil	None		

To the best of my knowledge, I	certify that the above described materials were used during installation of th	is monitorina wel
	Mewin d. Ide	
Signature of Site Geologist:	11/000m W. DOC	

Well Designation: NAST-159-6H-38	Site Controlet
Site Name: CAS Ilai JAC Track IV	Sile Geologist: MEAVIN DAVE
Date Installed: 09/01/99	Drilling Company: GRound notes Protection Driller: Charles Rushed
Project Name: SAR Adderdum	- UNITED SUCIEN
in a contract of the contract	Project Number: NQ255. FBb. Q50 225

Material	Brand/Description	6	
	• 1	Source/Supplier	Sample
Well Casing	Sch. 80 PVC		Collected ?
Well Screen	Per-Park 1/20/20 50 1/2 5/ 8/20/2 1 5/	(Leoprobe Systems, 607 BANNEYST. JANNAS	NO
End Cap	Pre-PACK W/20/30 SAND Sch. 80 PVC INNER, Sta	mess Steelanter Geoprobe System, 67401	NO
Drilling Fluid	Sch. 80 PC (~2 in long)	Geoprobe Systems	NO
Drilling Fluid Additives	me	/	
Backfill Material	none		
Annular Filter Pack	20/30 Silica SAND (pre-PACK of SOLB. BAD		
Bentonite Seal Tork	30/65 Silica SAND		NO
Annular Grout	PORTLAND Cement Type I 64 18. Bags	Standard SAND, JACKSONVILLE FL	~ 0
Surface Cement	QUIKNete (80 LB. BAGS)		No
Protective Casing	814. DIAM. Steel Flush MT. Locking Lover	QUIKNETE comporties (A+Ponta GA	M
Paint	None None	PENCO Hollywood, FL	NP
Rod Lubricant	none		
Compressor Oil	None		

To the best of my knowledge,	I certify that the above	described n	naterials were used during installation of this monitoring well.
	$Q_{n}//$	\ /	well.
Signature of Site Geologist:	Mourin de	X LO	

Well Designation: NAST-159-614-39	Site Geologist: MELVIN DAY
Site Name: GAS HILL NAS JACKSONVILLE	
Date Installed: 09/01/99 Project Name: 5AR Adde dom	Driller: Charles Bucher
Project Name:	Project Number: NQ255. FBb. Q50. 225

Material	Brand/Description	Source/Supplier	Sample
Well Casing	Sch. 80 PVC		Collected ?
Well Screen	Pre-PACK W/20/30 SAND Sch. 80 PVC INNER, Stan	Geoprobe Systems, 607 BANNEYST. JANNAS	NO
End Cap	Sch. 80 PC (~2 in. long)		NO
Drilling Fluid	None (~2 in. long)	Geoprobe Systems	No
Drilling Fluid Additives	me		
Backfill Material	Morra		
Annular Filter Pack	20/30 Silica SAND (pre-PACK & SOLB. BAGS		
Bentonite Seal Jane	30/65 Silica Sand		NO
Annular Grout	PORTUANO CEMENT TWO I (946. legs	Standard SAND JACKSONVILLE FL	70
Surface Cement	QUIKNETE (80 LD. BAGS)		NO
Protective Casing	8 M. DIAM. Steel Flush MT. Locking Lovek	QUIKALTE comparies Atlanta, CA	
Paint	None	Princo Hollywood, Fr	No
Rod Lubricant	none		<u> </u>
Compressor Oil	none		
·			

To the best of my knowledge,	, I certify that the above	described ma	aterials were used during installation of this monitoring well
	Mewn d.		
Signature of Site Geologist:_	/1/ ewn 4.	2de	<u> </u>

APPENDIX F GROUNDWATER SAMPLE LOG SHEETS

					
Project / Site:	NAS Jacksonville - G	as Hill	Sample ID No.	.: NASJ-159	9-GH-01-01
Project No.:	N0255		Sample Locati		
[X] Monitoring Well			Sampler:	Errc Pa	rlce
[] Domestic Well					·
[] Other:					
		SAMPLING DATA			
Date: 672 099	Color pH	S.C. Temp.	Turbidity NTU	DO mg/L	
Time: / 2 CO Method: Peristaltic	Clay 5.81	0.243 27.0		.09	
Method: Peristaltic	[Cay 13.0]	ひみてう & 7.ひ PURGE DATA	289 2	.07]	
Date: 073099					
Method: Peristaltic	1				
Monitor Reading (ppm): N/A	1				
Well Casing Diameter: 2 inch		See Attached	Low Flow Pur	ge Data Sheet	
Well Casing Material: PVC		f	or Purge Data	a	
Total Well Depth (ft): 14.22					
Static Water Level (ft):(9.93					
One Casing Volume(gal/1): 4,5					
Start Purge (hrs): 1055	1110				
End Purge (hrs): 1215					
Total Purge Time (min): 65					
Total Vol. Purged (gal(C): 14,3		LE COLLECTION INFOR			
Analysis	Preservative	Container Require		Laboratory	Collected
VOCs	HCI	2-40ml vials		ENCO	yes
SVOCs	None	1-1Liter glass ambe	rs	ENCO	1
Lead	НИОЗ	1-250ml plastic		ENCO	V
					
				· · · · · · · · · · · · · · · · · · ·	
OBSERVATION				LABIN	IFO
Put tubing to	9 PT. BTOC.		LA	B: ENCO	
Put thing to	() () ()	•			cutive Park Ct.
V				Jax, FL 3	2216-6069
		•	l ec	oc#: <u>039</u>	94
			LA	B:	
			cc	OC #:	
21.00		lei	gnature(s):		
Check if Collected:				_	
MS/MSD DUPLICATE	/ ID No.:		Evi Pa	h	-
ı			ou la		

☐ MS/MSD ☐

Project / Site:	NAS Jacksonville - Gas Hill			Sample II		NASJ-159-GH- & 2 - 01		
Project No.:	N0255				Sample L	ocation:	JAX-159-GH	٠ ك
[X] Monitoring Well					Sampler [.]	M	DA VE	
[] Domestic Well					Campion			
[] Other:		1010101010101010101		aganien ganera	****************			
0 80 2 0 9	J Color		SAME S.C.	PLING DATA Temp.	Turbidity	Гро		
Date: 0 80 2 9 7 Time: / 2 3 5	Color	рН	mS/cm	°C	NTU	mg/L	-	1
Method: Peristaltic	dear	5.30	b.227	25.9	٦ 2	p.81		
Well Co.	I UVAN			GE DATA				
Date: 080299								
Method: Peristaltic	1		-					
Monitor Reading (ppm): N/A]							
Well Casing Diameter: 2 inch	1		See	Attached	Low Flow	Purge D	ata Sheet	
Well Casing Material: PVC	1				for Purge I	Data		•
Total Well Depth (ft): /4.02	1				_			
Static Water Level (ft): 6,97	6.79							
One Casing Volume(ga/1): 4.3	-						•	•
Start Purge (hrs): 1052	- [
End Purge (hrs): 133								•
Total Purge Time (min):	1					•		
Total Vol. Purged (gal(1): 12.9	1						•	
		SAMP	ECOLLE	CTION INFO	RMATION			
Analysis	Preserva	ative	Con	ainer Requir	ements		boratory	Collected
/OCs	HCI			2-40ml vials			ENCO	125
SVOCs	None	,	1-1 L i	ter glass amb	ers	•	ENCO	1 1
ead	HNO	3	1-	250ml plastic			ENCO V	
			·· -					
					· · · · · · · · · · · · · · · · · · ·		·	
	· ·		 .					
							·	
						·	 ,	
00000000000000000000000000000000000000	22020000000000000000000000000000000000				888888888888		LAB INFO	
OBSERVATION	SINUIES							
SET TUBING TO	12 FT.	BTOL		14.0	2	LAB:	ENCO	
·				-6.9	7		4810 Executi	
			-	71		COC #:	Jax, FL 3221	6-6069
				7"	/	1000 #.	<u> </u>	<u> </u>
						LAB:		
								<u> </u>
		•				COC #:		
•						000 77.		
		enne de se			\!/-\			
heck if Callected:				S	Signature(s):	, (0	
heck if Collected: MS / MSD DUPLICATE	/ ID No.:			S	Signature(s):	w. S.		

Page_	_ of _	-

Tt

Project / Site: Project No.:	NAS Jackson N0255	nville - G	as Hill		Sample ID		NASJ-159-GH- Ø3 - Ø1 JAX-159-GH- 3		
[X] Monitoring Well [] Domestic Well [] Other:				·	Sampler:	<u>E.</u>	PARKE	2	
			SAM	PLING DATA					
Date: 8 /2/99	Color	рН	S.C.	Temp. °C	Turbidity	DO			
Time: 1020 Method: Peristaltic	10000	6.52	mS/cm N.642	26.8	NTU	mg/L	 	 	
Method: Peristaltic	LOUR!	4.2V		ا ک ماکر RGE DATA	0	1.17			
Date: 0/0299									
Method: Peristaltic	1			•					
Monitor Reading (ppm): N/A	†								
Well Casing Diameter: 2 inch	1		See	. Attached	Low Flow	Purae Dr	ata Sheet		
Well Casing Material: PVC			Ta J	\	for Purge [-			
Total Well Depth (ft): 14.27	<				10, ,	7 G.G.	•		
Static Water Level (ft): 6.77	4.3/.	i							
One Casing Volume(gal(L): 49	0.50								
Start Purge (hrs): 0905	İ								
End Purge (hrs): 1015	ĺ							*	
Total Purge Time (min): 70			**						
Total Vol. Purged (gal(C): /5.8	<u>L</u>						•		
<u> </u>		SAMP		CTION INFOR					
Analysis	Preservat	ive		tainer Requin	ements		boratory	Collected	
VOCs	HCI		· 1	2-40ml vials		F	ENCO	Yes	
SVOCs	None	1	1-1 Li	ter glass amb	ers	F	ENCO	ΓT	
Lead	HNO3		1-	250ml plastic		F.	ENCO	175	
	•								
			-					 	
		-+							
		-+		<u> </u>				 	
		-+							
OBSERVATION	S/NOTES						LAB INFO		
<u> </u>		<u>Highlighter</u>		<u>Hilbhilington</u>	<u> </u>	<u> </u>			
SET THBING TO 12	FT. 870	С				LAB:	ENCO		
					1		4810 Executiv	/e Park Ct.	
			* •			COC #:	803946	0-0003	
	•					1.40.	,		
					. [-	LAB:			
					1				
•									
				·.		COC #:			
>heck if Collected:				S		COC #:			
Check if Collected:				s	Signature(s):	• • •			

						. 5.11	
Project / Site:	NAS Jacksonville - (Sas Hill	- '	Sample ID No.:		NASJ-159-GH- 04 - 01	
Project No.:	N0255		Sample Lo	ocation:	JAX-159-GH-	4	
			Sampler:	5	Perker.		
[X] Monitoring Well			Oampier.				
[] Domestic Well							
[] Other:			- 		dinamanan dinaman	00 000000000000000000000000000000000000	
		SAMPLING DATA	Turkidite	DO DO	T		
Date: 8/3	Color pH	S.C. Temp.	Turbidity NTU	mg/L	!		
Time: 1340 Method: Peristaltic	clear 6,23		10	1.81			
Welliou.	1044110,2-	PURGE DATA					
Date: 8/3							
Method: Peristaltic		•					
Monitor Reading (ppm): N/A						·	
Well Casing Diameter: 2 inch	1	See Attached	Low Flow	Purge Da	ata Sheet		
Well Casing Material: PVC			for Purge I	Data		·	
Total Well Depth (ft): 10.67						·	
Static Water Level (ft): 3,00	3.58	•		,		.	
One Casing Volume(gal/L): 46	1						
Start Purge (hrs): 1225							
End Purge (hrs): 1390	1330						
Total Purge Time (min): 75	65	.•					
Total Vol. Purged (ga/仏): 14.0 ム		LE COLLECTION INFO	57425 575 BIRE				
Analysis	Preservative	Container Requi		Lat	ooratory	Collected	
VOCs	HCI	2-40ml vials			ENCO	yes	
SVOCs	None	1-1Liter glass amb	ers		ENCO		
Lead	HNO3	1-250ml plastic			ENCO	7.2S	
	<u> </u>					Y	
		<u></u>	<u> </u>		·	 	
	<u> </u>	<u> </u>					
	 				<u> </u>		
							
OBSERVATION	IS/NOTES				LAB INFO		
	<u> </u>			LAB:	ENCO		
SET TUBING TO 10 P	et. BTOC			LAD.	-	ro Ports Ct	
					4810 Executive Jax, FL 3221		
				COC #:	03947	2,3409	
			·	LAB:			
		•					
				COC #:			
				000 #.			
Check if Collected:			Signature(s):				
MS/MSD DUPLICATE	/ IĎ No s		Ene	0.		· [
MS/MSD DUPLICATE							
	/ ID No.:		me	1 sh			

Project / Site:	NAS Jacksonville - G	as Hill	Sample II) No.:	NASJ-159-0	GH-05-01
Project No.:	N0255	· · · · · · · · · · · · · · · · · · ·	Sample L	ocation:	JAX-159-GH	
•			_			
[X] Monitoring Well			Sampler:	<u>M</u> .	DARR	
[] Domestic Well						
[] Other:			_			
		SAMPLING DATA	- -			
Date: 0 8 0 3 9 9	Color pH	S.C. Temp.	Turbidity	DO	T	
Time: (147		mS/cm °C	NTU	mg/L		
Method: Peristaltic	aldy 5.81	2.41 25.3	6	<i>8.93</i>		
		PURGE DATA				
Date: 0803999	<u></u>					
Method: Peristaltic	-					
Monitor Reading (ppm): N/A		See Attached	d Low Flow	Durgo Do	sta Shoot	
Well Casing Diameter: 2 inch		See Allachet	for Purge I	-	ila Olleet	
Well Casing Material: PVC Total Well Depth (ft): /0.2 S			ioi i uige i	Dala		
Total Well Depth (ft): /0,25 Static Water Level (ft): 5.03						
One Casing Volume(gal/4): 3.	eg					
Start Purge (hrs): 0940	'					
End Purge (hrs): / 0 4 5						
Total Purge Time (min): 65	7					
Total Vol. Purged (gal/L): [0, 8	7					
	SAMI	LE COLLECTION INFO				
Analysis	Preservative	Container Requi	irements		oratory	Collected
OCs	HCI	2-40ml vials			ENCO	900
VOCs	None	1-1Liter glass aml	bers		ENCO	
ead	HNO3	1-250ml plastic	С	E	ENCO	V
					·	
OBSERVATI	ONS/NOTES				LAB INFO	
				LAB:	ENCO	
					4810 Execut	
				COC #	Jax, FL 322	16-6069
				COC #:	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3701
				LAB:	<u></u>	·
						· · · · · · · · · · · · · · · · · · ·
·				COC #:		
heck if Collected:			Signature(s):	· · · · · ·		
			V. I	- 1		
MS/MSD DUPLICAT	E / ID No.: NAST-1	59-6H · DUP3-01	Min	mu.		
		i	<i>17</i> .			

Project / Site:	NAS Jacksonville - (Gas Hill	Sample ID	No.:	NASJ-159-GH	+ 06-01
Project No.:	N0255		Sample Lo	cation:	JAX-159-GH-	6
[X] Monitoring Well			Sampler:	<u>M.</u>	NASJ-159-GH JAX-159-GH DMVz	
[] Domestic Well	1					ŀ
[] Other:			•			
		SAMPLING DATA				
Date: 086399	Color pH	S.C. Temp.	Turbidity NTU	DO mg/L		·
Time: /455	clear	mS/cm °C	1410	mg/L		
Method: Peristaltic	IVUK.I	PURGE DATA				
Date: 080399				<u> </u>		
Method: Peristaltic					*.	
Monitor Reading (ppm): N/A						·
Well Casing Diameter: 2 inch		See Attached	Low Flow	Purge Da	ta Sheet	
Well Casing Material: PVC			for Purge [Data	i	·
Total Well Depth (ft): 1.7	4					
Static Water Level (ft): 4.7	9 491	•		٠.		
One Casing Volume(gal(L): 14	<i>1</i> .3					
Start Purge (hrs): 1242						
End Purge (hrs): /453						
Total Purge Time (min): /3	1 T					
1.5						
Total Vol. Purged (gal(1): 13						
Total Vol. Purged (gal(1): 13		PLE COLLECTION INFO		Lab	oratory	Collected
Total Vol. Purged (gal(1): 13 Analysis	Preservative HCI	PLE COLLECTION INFO Container Requir 2-40ml vials			oratory NCO	Collected
Total Vol. Purged (gal(): 13. Analysis VOCs	Preservative	Container Requir	rements			Collected
Total Vol. Purged (gal(): 13 Analysis VOCs SVOCs	Preservative HCl	Container Require 2-40ml vials	rements pers	E	NCO	
Total Vol. Purged (gal(): 13 Analysis VOCs SVOCs	Preservative HCI None	Container Requision 2-40ml vials 1-1Liter glass amb	rements pers	E	ENCO ENCO	yes 1
Total Vol. Purged (gal(): 13 Analysis VOCs SVOCs	Preservative HCI None	Container Requision 2-40ml vials 1-1Liter glass amb	rements pers	E	ENCO ENCO	yes 1
Total Vol. Purged (gal(1): 13	Preservative HCI None	Container Requi 2-40ml vials 1-1Liter glass amb	rements pers	E	ENCO ENCO	yes 1
Total Vol. Purged (gal(): 13 Analysis VOCs SVOCs	Preservative HCI None	Container Requi 2-40ml vials 1-1Liter glass amb	rements pers	E	ENCO ENCO	yes 1
Total Vol. Purged (gal(): 13 Analysis VOCs SVOCs	Preservative HCI None	Container Requi 2-40ml vials 1-1Liter glass amb	rements pers	E	ENCO ENCO	yes 1
Total Vol. Purged (gal(): 13. Analysis VOCs SVOCs Lead	Preservative HCI None	Container Requi 2-40ml vials 1-1Liter glass amb	rements pers	E	ENCO ENCO	yes 1
Total Vol. Purged (gal(): 13. Analysis VOCs SVOCs Lead OBSERVA	Preservative HCI None HNO3	Container Requi 2-40ml vials 1-1Liter glass amb	rements pers	E	NCO NCO NCO	yes 1
Total Vol. Purged (gal(): 13. Analysis VOCs SVOCs Lead	Preservative HCI None HNO3	Container Requi 2-40ml vials 1-1Liter glass amb	rements pers	E	IAB INFO	yes V
Total Vol. Purged (gal(): 13. Analysis VOCs SVOCs Lead OBSERVA	Preservative HCI None HNO3	Container Requi 2-40ml vials 1-1Liter glass amb	rements pers	LAB:	NCO NCO NCO	e Park Ct.
Total Vol. Purged (gal(): 13. Analysis VOCs SVOCs Lead OBSERVA	Preservative HCI None HNO3	Container Requi 2-40ml vials 1-1Liter glass amb	rements pers	E	LAB INFO ENCO 4810 Executiv	re Park Ct.
Total Vol. Purged (gal(): 13. Analysis VOCs SVOCs Lead OBSERVA	Preservative HCI None HNO3	Container Requi 2-40ml vials 1-1Liter glass amb	rements pers	LAB:	LAB INFO ENCO 4810 Executiv	e Park Ct.
Total Vol. Purged (gal(): 13. Analysis VOCs SVOCs Lead OBSERVA	Preservative HCI None HNO3	Container Requi 2-40ml vials 1-1Liter glass amb	rements pers	LAB:	LAB INFO ENCO 4810 Executiv	e Park Ct.
Total Vol. Purged (gal(): 13. Analysis VOCs SVOCs Lead OBSERVA	Preservative HCI None HNO3	Container Requi 2-40ml vials 1-1Liter glass amb	rements pers	LAB:	LAB INFO ENCO 4810 Executiv	e Park Ct.
Analysis VOCS SVOCS Lead OBSERVA SET TUBING TO (Preservative HCI None HNO3	Container Required 2-40ml vials 1-1Liter glass amb 1-250ml plastic	rements	LAB:	LAB INFO ENCO 4810 Executiv	e Park Ct.
Total Vol. Purged (gal(): 13. Analysis VOCs SVOCs Lead OBSERVA	Preservative HCI None HNO3	Container Required 2-40ml vials 1-1Liter glass amb 1-250ml plastic	rements pers Signature(s):	LAB: COC #: COC #:	LAB INFO ENCO 4810 Executiv	e Park Ct.
Analysis VOCs SVOCs Lead OBSERVA SET TUBING TO (Preservative HCI None HNO3	Container Required 2-40ml vials 1-1Liter glass amb 1-250ml plastic	rements	LAB: COC #: COC #:	LAB INFO ENCO 4810 Executiv	e Park Ct.

Project / Site: Project No.:	NAS Jacksonville - Ga	s Hill	Sample ID No		6H &7-01 +7
[X] Monitoring Well[] Domestic Well[] Other:			Sampler: <u>≤</u>	er.c. Parka	
Date: VSO399 Time: 1035 Method: Peristaltic Date: VSO399 Method: Peristaltic Monitor Reading (ppm): N/A Well Casing Diameter: 2 inch Well Casing Material: PVC Total Well Depth (ft): 10 Static Water Level (ft): 2.74 One Casing Volume(gal): 4.4 Start Purge (hrs): 0920 End Purge (hrs): 1655	Color pH			po mg/L 2,67 rge Data Sheet a	
Total Vol. Purged (ga(し): /仏.)し Analysis	SAMPI Preservative	E COLLECTION INFOR		Laboratory	Collected
/OCs	HCI	2-40ml vials		ENCO	yes
SVOCs	None	1-1Liter glass ambe	rs	ENCO	yes
_ead	HNO3	1-250ml plastic		ENCO	\\ \tes
OBSERVATION	IS/ NOTES			LABINFO	
set libing to 8-9	*,		LA	B: ENCO 4810 Executi Jax, FL 322 OC #:	ve Park Ct.
Check if Collected:		Siq	gnature(s):		
MS/MSD DUPLICATE	/ ID No.:		Eve Par	h	

Page_/	_ of
--------	------

Project / Site:	NAS Jacksonvil	lle - Gas Hill		Sample ID			+08-01
Project No.:	N0255			Sample Lo	ocation:	JAX-159-GH	8
				Complex	V	PARKER	
[X] Monitoring Well				Sampler:	<u> </u>	HILL	
[] Domestic Well							
[] Other:							
		************	PLING DATA				
Date: ()80349	Color	pH S.C. mS/cm	Temp. °C	Turbidity NTU	DO mg/L		
Time: '/605	100-016		26.1	8	2.89	 	
Method: Peristaltic	clear 6.	PUF	GE DATA		(
Date: 08039				100000000000000000000000000000000000000			
Method: Peristaltic	1		•		· ·		ł
Monitor Reading (ppm): N/A	1						
Well Casing Diameter: 2 inch	•	See	Attached	Low Flow	Purge Da	ata Sheet	
Well Casing Material: PVC				for Purge	Data		
Total Well Depth (ft): 1692	1						
Static Water Level (ft): 7.7-5	8.01 WD						
One Casing Volume(gal(L): 5.5]						
Start Purge (hrs): 1435							
End Purge (hrs): 1585	j						п
Total Purge Time (min): 80		•					
Total Vol. Purged (gal(L): 17.02		92445888888888					
		SAMPLE COLLE			Lai	boratory	Collected
Analysis	Preservativ HCl	e Con	CTION INFO tainer Requi 2-40ml vials			boratory ENCO	Collected
Analysis VOCs	Preservativ	e Con	tainer Requi 2-40ml vials	rements			· .
Analysis VOCs SVOCs	Preservativ HCI None	e Con	tainer Requi 2-40ml vials iter glass aml	rements pers		ENCO	yes Yes
Analysis VOCs	Preservativ HCI	e Con	tainer Requi 2-40ml vials	rements pers		ENCO ENCO	yes
Analysis VOCs SVOCs	Preservativ HCI None	e Con	tainer Requi 2-40ml vials iter glass aml	rements pers		ENCO ENCO	yes Yes
Analysis VOCs SVOCs	Preservativ HCI None	e Con	tainer Requi 2-40ml vials iter glass aml	rements pers		ENCO ENCO	yes Yes
Analysis VOCs SVOCs	Preservativ HCI None	e Con	tainer Requi 2-40ml vials iter glass aml	rements pers		ENCO ENCO	yes Yes
Analysis VOCs SVOCs	Preservativ HCI None	e Con	tainer Requi 2-40ml vials iter glass aml	rements pers		ENCO ENCO	yes Yes
Analysis VOCs SVOCs Lead	Preservativ HCI None HNO3	e Con	tainer Requi 2-40ml vials iter glass aml	rements pers		ENCO ENCO	yes Yes Yes
Analysis VOCs SVOCs	Preservativ HCI None HNO3	e Con	tainer Requi 2-40ml vials iter glass aml	rements pers		ENCO ENCO ENCO	yes Yes Yes
Analysis VOCs SVOCs Lead	Preservativ HCI None HNO3	e Con	tainer Requi 2-40ml vials iter glass aml	rements pers		ENCO ENCO LAB INFO	yes Yes Yes
Analysis VOCs SVOCs Lead OBSERVATION	Preservativ HCI None HNO3	e Con	tainer Requi 2-40ml vials iter glass aml	rements pers		ENCO ENCO ENCO ENCO ENCO 4810 Executi	уез Уеѕ Уеѕ ve Park Ct.
Analysis VOCs SVOCs Lead OBSERVATION	Preservativ HCI None HNO3	e Con	tainer Requi 2-40ml vials iter glass aml	rements pers		ENCO ENCO LAB INFO	yes Yes Yes Yes
Analysis VOCs SVOCs Lead OBSERVATION	Preservativ HCI None HNO3	e Con	tainer Requi 2-40ml vials iter glass aml	rements pers	LAB:	ENCO ENCO ENCO ENCO ENCO 4810 Executi	уез Уеѕ Уеѕ ve Park Ct.
Analysis VOCs SVOCs Lead OBSERVATION	Preservativ HCI None HNO3	e Con	tainer Requi 2-40ml vials iter glass aml	rements pers	LAB:	ENCO ENCO ENCO ENCO ENCO 4810 Executi	уез Уеѕ Уеѕ ve Park Ct.
Analysis VOCs SVOCs Lead OBSERVATION	Preservativ HCI None HNO3	e Con	tainer Requi 2-40ml vials iter glass aml	rements pers	LAB:	ENCO ENCO ENCO ENCO ENCO 4810 Executi	уез Уеѕ Уеѕ ve Park Ct.
Analysis VOCs SVOCs Lead OBSERVATION	Preservativ HCI None HNO3	e Con	tainer Requi 2-40ml vials iter glass aml	rements pers	LAB:	ENCO ENCO ENCO ENCO ENCO 4810 Executi	уез Уеѕ Уеѕ ve Park Ct.
Analysis VOCs SVOCs Lead OBSERVATION SET TUBING TO 10	Preservativ HCI None HNO3	e Con	tainer Requi 2-40ml vials iter glass aml -250ml plasti	rements pers	LAB:	ENCO ENCO ENCO ENCO ENCO 4810 Executi	уез Уеѕ Уеѕ ve Park Ct.
Analysis VOCs SVOCs Lead OBSERVATION	Preservativ HCI None HNO3	e Con	tainer Requi 2-40ml vials iter glass aml -250ml plasti	pers	LAB: COC #: LAB: COC #:	ENCO ENCO ENCO ENCO 4810 Executi Jax, FL 322	уез Уеѕ Уеѕ ve Park Ct.

Project / Site:	NAS Jacksonville - Ga	s Hill	Sample ID No.:	NASJ-159-GH-	
Project No.:	N0255	· · · · · ·	Sample Location:	JAX-159-GH-	9
[X] Monitoring Well [] Domestic Well [] Other:			Sampler: MER	IN DATE	
		SAMPLING DATA			
Date: 080299 Time: 0950	Color pH	S.C. Temp. mS/cm °C	Turbidity DO mg/L		
Method: Peristaltic	clear 6.37	0.570 25.0	-10 1.82		
Date: \$\int \$\text{\$\exitit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\e	6.11- ΜΟ	See Attached L	Low Flow Purge Depr Purge Data	ata Sheet	
Analysis	Preservative	Container Require		boratory	Collected
VOCs	HCI	2-40ml vials		ENCO	1100
SVOCs	None	1-1Liter glass amber	3	ENCO	1/
Lead	НИОЗ	1-250ml plastic		ENCO	V
OBSERVATION	S/NOTES			LAB INFO	
SET TUBING TO 12		14.28 -6.51 -7.4	LAB: COC #:	ENCO 4810 Executive Jax, FL 32216 83944	
		l si	COC #:		
Check if Collected: MS / MSD DUPLICATE	/ ID No.:		Men W. De	le	

	·	· · · · · · · · · · · · · · · · · · ·				
Project / Site:	NAS Jacksonville - G	as Hill	Sample ID		NASJ-159-GH	
Project No.:	N0255	·	Sample Lo	cation:	JAX-159-GH-	100
[X] Monitoring Well [] Domestic Well [] Other:			Sampler:	M. 1	PACE	
		SAMPLING DATA	- 			
Date: 🛛 🕽 🕽 💆	Color pH	S.C. Temp.	Turbidity	DO		
Time: 1728	"	mS/cm °C	NTU	mg/L]
Method: Peristaltic	clear 6.20	0,795 25.5	-10	2.27		
		PURGE DATA				
Date: 080299				<u></u>		
Method: Peristaltic						
Monitor Reading (ppm): WA	1					
Well Casing Diameter: 2 inch	1 .	See Attached	Low Flow	Purge Da	ata Sheet	
Well Casing Material: PVC	1		for Purge D	-	= ==	
Total Well Depth (ft): 14.36	1					
Static Water Level (ft): 7.34	7.34 W					
One Casing Volume(gal(1):	17.31 WY					
	1					
Start Purge (hrs): 1626	1				•	
End Purge (hrs): 1725	}					
Total Purge Time (min): 59						
Total Vol. Purged (gal(1): /3		LE COLLECTION INFO				
Analysis	Preservative	Container Requir		l al	oratory	Collected
VOCs	HCI	2-40ml vials			ENCO	yes
SVOCs	None	1-1Liter glass amb	pers		ENCO	71
	HNO3	1-250ml plastic			ENCO	1//
Lead	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- Loom piaduo	-			<u> </u>
		· · · · · · · · · · · · · · · · · · ·				
OBSERVATION	IS/NOTES				LAB INFO	
SET TUBING TO 12	L PT. BTO:			LAB:	ENCO	
	L PT. 13TOC	14.36			4810 Executiv	re Park Ct
well rook dry during	amole of de	ps. 7.3	7		Jax, FL 3221	
Man I V	17 10 01.	1 -7.0)2	COC #:	03946	
Thised from Keey	p samples Le	1		LAB:		
revover for Leed	1 4 8/9 B. (.			LAD.		
V						
•			ŀ			
•				COC #:		
Check if Collected		Is	Signature(s): /	_	\	
	1 0/ 1		Signature(s):	_		
Check if Collected: MS/MSD DUPLICATE		159-6H-Dufz-	91/1	coc#:) de	
Check if Collected: MS/MSD DUPLICATE	Mono: HAST- GNOT OF GHAT.		91/1	_	Sche	

	Project / Site:	NAS Jacksonville - Ga	as Hill	Sample ID No.:	NASJ-159-0	6H-12-0/
	Project No.:	N0255		Sample Location:		
	[X] Monitoring Well [] Domestic Well [] Other:			Sampler:	JAX-159-GH	
}			SAMPLING DATA			
	Date: 073 0 99 Time: 17 12 Method: Peristaltic	Color pH Clear G.83	s.c. Temp. ms/cm °C 0,494 24-5	Turbidity DO NTU mg/ / 0 / 9	L	
	Date: 073099 Method: Peristaltic		PURGE DATA			
	Monitor Reading (ppm): N/A Well Casing Diameter: 2 inch Well Casing Material: PVC Total Well Depth (ft): 33.70			Low Flow Purge for Purge Data	Data Sheet	·
5 FT.	Static Water Level (ft): 4.10 One easing Volume (gal(): 3.1 Start Purge (hrs): /6 2.5 End Purge (hrs): 1705					
-	Total Purge Time (min): 46 Total Vol. Purged (gal/L): 10.5	_ SAMP	LE COLLECTION INFOR	XMATION:		
ľ	Analysis	Preservative	Container Requir		Laboratory	Collected
	/OCs	HCI	2-40ml vials		ENCO	yes
[5	SVOCs	None	1-1Liter glass amb	ers	ENCO	//
	ead	HNO3	1-250ml plastic		ENCO	V
-			·		-	
	put tubin	notes 1 6 28 FT. B	,T0 L	LAB:	ENCO	
				COC	4810 Executi Jax, FL 3221 #: 0397 0	
				LAB:		<u> </u>
				COC	#:	
	Check if Collected: MS / MSD DUPLICATE /	' ID No.:		ignature(s):	·	

Page	of_	$oxed{L}$
------	-----	-----------

Project / Site:	NAS Jacksonville - Ga	as Hill	Sample ID No.: Sample Location:	NASJ-159-GH-	
Project No.:	110200		campic Education.	0,00 100 011	13
[X] Monitoring Well [] Domestic Well [] Other:			Sampler: Ev.c	Parker-	
		SAMPLING DATA			
Date: 8/ 7 Time: /555 Method: Peristaltic Date: 8/ 7	Color pH (2002 6.30	S.C. Temp. mS/cm °C Dy.595 25.8 PURGE DATA	Turbidity DO mg/L 3 /.48		
Method: Peristaltic	_				
Monitor Reading (ppm): N/A Well Casing Diameter: 2 inch Well Casing Material: PVC			_ow Flow Purge Data	ata Sheet	
Total Well Depth (ft): 15.30	6.43		·		:
Start Purge (hrs): 1425 End Purge (hrs): 1545 Total Purge Time (min): 80 Total Vol. Purged (gal(1): 17.06					
		LE COLLECTION INFORI			
Analysis	Preservative	Container Require		boratory	Collected
VOCs	HCI	2-40ml vials		ENCO	y es
SVOCs	None	1-1Liter glass amber		ENCO	yes
Lead	HNO3	1-250ml plastic		ENCO	20
OBSERVATION	IS/NOTES			LAB INFO	
SET TUBING TO 13		o'.	LAB: COC #: LAB: COC #:	ENCO 4810 Executiv Jax, FL 3221	
Check if Collected:					
MS/MSD DUPLICATE	/ ID No.:		En Pale		

Project / Site:	NAS Jacksonville - Ga	as Hill	Sample ID	No.:	NASJ-159-GH	+ 14-01
Project No.:	N0255		Sample Lo	cation:	JAX-159-GH-	14 :
[X] Monitoring Well [] Domestic Well [] Other:			Sampler:	<i>M</i> .	DAG	
		SAMPLING DATA				
Date: 073 099 Time: 1024 Method: Peristaltic	Color pH	S.C. Temp. mS/cm °C 0.309 26.+ PURGE DATA	Turbidity NTU	DO mg/L /. √.3		
Date: 073399 Method: Peristaltic Monitor Reading (ppm): N/A Well Casing Diameter: 2 inch Well Casing Material: PVC Total Well Depth (ft): 1491 Static Water Level (ft): 6.1. One Casing Volume(gal4): 5.3		See Attached	Low Flow for Purge [•	ata Sheet	
Start Purge (hrs): 0555 End Purge (hrs): 021 Total Purge Time (min): 86 Total Vol. Purged (gal(1): 17.9 Analysis	SAMP Preservative	E COLLECTION INFOR		Lat	poratory	Collected
/OCs	HCI	2-40ml vials			NCO	lies
SVOCs	None	1-1Liter glass ambe	ers	. E	NCO	77
ead	HNO3	1-250ml plastic		E	ENCO	<i>V</i>
OBSERVATION					LAB INFO	
set tubing to 9 F	T. BTOC.			COC #: COC #:	ENCO 4810 Executiv Jax, FL 32210 0 39	6-6069
Check if Collected:		s	ignatu <i>r</i> e(s):		<u> </u>	
MS/MSD DUPLICATE	/ ID No.:		Mum	W. Ad	ke	

Page /	of I	/
~ ~		

Project / Site:	NAS Jackso	onville - Ga	as Hill		Sample IE) No.:	NASJ-159-G	H 15-01
Project No.:	N0255		-		Sample Lo	ocation:	JAX-159-GH	- 15
					- , .	~	PARKE	
[X] Monitoring Well					Sampler:	<u> </u>	. YARKE	R
[] Domestic Well								
[] Other:					-			
			SAM	PLING DATA				
Date: 073099	Color	рН	S.C.	Temp.	Turbidity	DO mg/l		
Time: 1505			mS/cm	°C	NTU 6	mg/L 0.93		
Method: Peristaltic	(Kluk)	5.53	<i>0,189</i>	25,≤ RGE DATA	Ι Ψ	0.73		
Date: 073099				terrioria del		***************************************		
Method: Peristaltic	ĺ						•	
Monitor Reading (ppm): N/A	İ							
Well Casing Diameter: 2 inch	1		See	Attached	Low Flow	Purge Da	ta Sheet	
Well Casing Material: PVC					for Purge I	Data	•	
Total Well Depth (ft): 14.50								
Static Water Level (ft): 5.98								
One Casing Volume(gal(L): 5.2								
Start Purge (hrs): /340								
End Purge (hrs): /S								
Total Purge Time (min): 80								
Total Vol. Purged (gal/句: パんん		SAMP	FCOLLE	CTION INFO	RMATION			
Analysis	Preserv	<u> </u>		ntainer Requi	*********	Lab	oratory	Collected
VOCs	HCI			2-40ml vials		E	NCO	Yes
SVOCs	None	•	1-1L	iter glass amb	oers	. Е	NCO	
Lead	нио	3	1	-250ml plastic	Э.	E	NCO	D
		İ						·
				.,,,,				
			,					
							waanaaaaa	
OBSERVATION	S/NOTES						LAB INFO	
						LAB:	ENCO	
Tubins is 9.5	t+ 90	wn 1	well				4810 Executiv	
740.						COC #:	Jax, FL 3221 0394	6-5069 4
						LAB:		
								· · · · · · · · · · · · · · · · · · ·
						COC #:		
Check if Collected:					Signature(s):			
					•			
☐ MS/MSD ☐ DUPLICATE	/ ID No.:			1				

Desired / Oites	NAS Jacksonville - G	on Lill	Comple IF) No .	NAC L 150 OI	1 11
Project / Site: Project No.:	N0255	as (1111	Sample ID		NASJ-159-GI JAX-159-GH-	+ 16 - 81
r Toject No	110200		•			16
[X] Monitoring Well			Sampler:	Eric	Parker	
[] Domestic Well			•		- VICE	
[] Other:						
		SAMPLING DATA				
Date: 8/2/99	Color pH	S.C. Temp.	Turbidity	DO		
Time: 1205	1	mS/cm °C	NTU	mg/L	<u></u>	
Method: Peristaltic	clear 6.26	12.747 25.4	N	1.19		
		PURGE DATA				
Date: 8/2	ļ					
Method: Peristaltic						
Monitor Reading (ppm): N/A	ł					
Well Casing Diameter: 2 inch	•	See Attached I		•	ita Sheet	
Well Casing Material: PVC		10	or Purge I	Jata		
Total Well Depth (ft): 14.60	C 72					
	5.72					
One Casing Volume(gal/1): 5.6 Start Purge (hrs): 1045		•				
End Purge (hrs): 1155						
Total Purge Time (min): 70						
Total Vol. Purged (gal/L): 17.0	_					
		LE COLLECTION INFORI	MATION			
Analysis	Preservative	Container Require	ments		oratory	Collected
VOCs	HCI	2-40ml vials		E	NCO	res
SVOCs	None	1-1Liter glass amber	rs	E	NCO	
Lead	HNO3	1-250ml plastic		E	NCO	U
OBSERVATION	S/NOTES				LAB INFO	
SET TUBING to 12	FT. PODC			LAB:	ENCO	
	,				4810 Executiv	
				COC #:	Jax, FL 32210	5-6069
·				000 #.	- NS / 16	
				LAB:		<u> </u>
			i			·
				COC #:	·	
Check if Collected:		Sig	gnature(s):			
			Ening	Pake		
MS/MSD DUPLICATE	/₄ ID No.:			122	_	

Project / Site:	NAS Jackson	ville - Ga	as Hill		Sample ID		NASJ-159-GI	
Project No.:	N0255				Sample Lo	ocation:	JAX-159-GH	17
[X] Monitoring Well [] Domestic Well					Sampler:	Evic	Pal	
[] Other:					-			
			SAM	PLING DATA				
Date: 8/2	Color	рН	S.C.	Temp.	Turbidity	DO		
Time: 1740	10/0 1	/ 00	mS/cm	00	NTU	mg/L		
Method: Peristaltic	CUAK (0.77	10.57a			/· <i>53</i>		
~ ()			РО	RGE DATA				
Date: 8/2	-							
Method: Peristaltic	1							
Monitor Reading (ppm): N/A	4		800	ΛΗορροσ	Low Flow	Purae D	ata Shoot	•
Well Casing Diameter: 2 inch			366	5 Allaunel	for Purge	-	ala Oneel	
Well Casing Material: PVC	•				ioi i uige i	Daia		
Total Well Depth (ft): 4.86	1, 0,1							
Static Water Level (ft): 6.74	しづり							
One Casing Volume(gal(1): 5.1	1							
Start Purge (hrs): 16.15	1							
End Purge (hrs): 17 30	1							
Total Purge Time (min): 75							•	
Total Vol. Purged (gal/1): 16,04		SAMP	LE COLLI	CTION INFO	RMATION			
Analysis	Preserva	******		ntainer Requi		La	boratory	Collected
VOCs	HCI		·	2-40ml vials			ENCO	7=3
VOCs SVOCs	HCl None	-	1-11	2-40ml vials _iter glass aml	bers		ENCO ENCO	7=3 4=3
							. ~ - ·	1
SVOCs	None			_iter glass aml			ENCO	428
SVOCs	None			_iter glass aml			ENCO	428
SVOCs	None			_iter glass aml			ENCO	428
SVOCs	None			_iter glass aml			ENCO	428
SVOCs	None			_iter glass aml			ENCO	428
SVOCs	None HNO3			_iter glass aml			ENCO	yes yes
SVOCs Lead OBSERVATION	None HNO3			_iter glass aml			ENCO ENCO LAB INFO	yes yes
SVOCs Lead	None HNO3			_iter glass aml			ENCO LAB INFO ENCO	yes 1/25
SVOCs Lead OBSERVATION	None HNO3			_iter glass aml		LAB:	ENCO ENCO LAB INFO ENCO 4810 Executi Jax, FL 3221	yes
SVOCs Lead OBSERVATION	None HNO3			_iter glass aml			ENCO ENCO LAB INFO ENCO 4810 Executi	yes yes yes
SVOCs Lead OBSERVATION	None HNO3			_iter glass aml		LAB:	ENCO ENCO LAB INFO ENCO 4810 Executi Jax, FL 3221	yes
SVOCs Lead OBSERVATION	None HNO3			_iter glass am		LAB:	ENCO ENCO LAB INFO ENCO 4810 Executi Jax, FL 3221	yes yes yes
SVOCs Lead OBSERVATION	None HNO3			_iter glass am		LAB:	ENCO ENCO LAB INFO ENCO 4810 Executi Jax, FL 3221	yes
SVOCs Lead OBSERVATION	None HNO3 IS/NOTES FT, TSTO	·		iter glass aml	C	LAB: COC #: COC #:	ENCO ENCO ENCO 4810 Executir Jax, FL 3221	yes
SVOCS Lead OBSERVATION SET TUBING TO 12	None HNO3 IS/NOTES FT, TSTO	·		iter glass aml	C	LAB: COC #: COC #:	ENCO ENCO ENCO 4810 Executir Jax, FL 3221	yes

Page	of
------	----

		-					
Project / Site:	NAS Jacksonv	ille - Gas Hill		Sample ID	No.:	NASJ-159-GI	H-19-01
Project No.:	N0255			- Sample Lo		JAX-159-GH	
				.	Λ	DAVE	
[X] Monitoring Well				Sampler:	<u> </u>	DAR	
[] Domestic Well							
[] Other:				-			
		*************	PLING DATA				
Date: 088299	Color	pH S.C.	Temp. °C	Turbidity NTU	DO mg/L		
Time: 1540 Method: Peristaltic	L+ UNION S.		26.3	-10	1.24		
Well Rd. 1 Choulds	L. Killer D		RGE DATA				
Date: \$88299	<u> </u>		1+1+1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		•••••••	*****************	
Method: Peristaltic				•			:
Monitor Reading (ppm): N/A							
Well Casing Diameter: 2 inch		See	Attached	Low Flow	Purge Da	ta Sheet	i
Well Casing Material: PVC	l			for Purge [Data		
Total Well Depth (ft): 10.91							
	3.06						
One Casing Volume(gal/L): 4.6							
Start Purge (hrs): /438							
End Purge (hrs): 537							
Total Purge Time (min): 59							
Total Vol. Purged (gal(C): 13-4		SAMPLE COLLE	CTION INFO	DMATION			
Analysis	Preservativ		tainer Requii		Lab	oratory	Collected
OCs	HCI		2-40ml vials	-	E	NCO	nes
VOCs	None	1-1L	iter glass amb	ers	E	NCO	1,
ead	НИОЗ	1-	-250ml plastic		Е	NCO	V
					- · · ·		
					····		
	vivoimmen						
OBSERVATIONS	NOTES					LAB INFO	
SET TUBING TO 10 F	T. BTOC .				LAB:	ENCO	
						4810 Executiv	
					COC #:	Jax, FL 32216 X23946	5-6069
					•	00110	
					LAB:		
					•		
				ľ	COC #:		
heck if Callected:							
			S	Signature(s):	(-	
MS/MSD DUPLICATE /			s	/////	m de	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	· .

		·-					
Project / Site:	NAS Jacksonville - Ga	as Hill	Sample ID		NASJ-159-GH		
Project No.:	N0255		Sample Lo	cation:	JAX-159-GH-	20	
, , , , , , , , , , , , , , , , , , , ,			_	•	JAX-159-GH-		
[X] Monitoring Well	\		Sampler:	<i>N</i>).	DALE		
[] Domestic Well	\					,	
[] Other:							
		SAMPLING DATA					
D.H. VAC 1029 G	Color pH	S.C. Temp.	Turbidity	DO			
Date: \(\infty 8 \times 3 \frac{9}{9} \) Time: \(\lambda \times 3 \frac{3}{9} \)		mS/cm °C	NTU	mg/L			
Method: Peristaltic	Clear 6,01	0.437 24.0	-1	2.00			
		PURGE DATA					
Date: Q8 Q39 9							
Method: Peristaltic	1						
Monitor Reading (ppm): N/A	1					ļ	
Well Casing Diameter: 2 inch	1	See Attached	d Low Flow	Purge Dat	ta Sheet		
Well Casing Material: PVC			for Purge I	Data			
Total Well Depth (ft): 35.95						Į.	
Static Water Level (ft): 2,91	3.05						
One Casing Volume(gal(1): 3.	1						
Start Purge (hrs): /527							
End Purge (hrs): 160 2							
Total Purge Time (min): 35							
Total Vol. Purged (gal(1): 9. 6			000000000000000000000000000000000000000			91494194419441944	
		LE COLLECTION INFO		Lah	oratory	Collected	
Analysis	Preservative HCI	2-40ml vials			NCO	1/04	
VOCs		1-1Liter glass am			NCO	1	
SVOCs	None				NCO	 	
Lead	HNO3	1-250ml plast	IC			 	
			<u> </u>		· .		
			·				
					· -		
				<u> </u>	<u> </u>	 	
			annaninanananananan	*****************	10000000000000000000000000000000000000		
OBSERVATION AND A					LAB INFO		
SET TubidG TO 380 Purge on 5 FT. S	PT. 870 C.			LAB:	ENCO		
human or 5 PT S	creen volume				4810 Executi		
I my in a series		•		COC #:	Jax, FL 3221		À
				COC #.	957	- 170 /	
				LAB:			
							ı
				COC #:			
			Signature(a)	<u> </u>			
Check if Collected:			Signature(s):	<u> </u>	 N		
Check if Collected: MS / MSD DUPLICATE	/ ID No.:		Signature(s):	COC #:	 lo		

B	NAS ladroppillo Cas Lill	Sample ID No.:	NASJ-159-GH- 2/-0/	
Project / Site:	NAS Jacksonville - Gas Hill	Sample ID No.: Sample Location:	JAX-159-GH- 2/	_
Project No.:	N0255	-		_
[X] Monitoring Well		Sampler:	. DALE	_
		. <u> </u>		_
[] Domestic Well				
[] Other:	standardina da la companya da la companya da la companya da la companya da la companya da la companya da la co			
	SAMPLING DATA Color pH S.C. Temp.	Turbidity DO		
Date: 0730 99 Time: // 48	Color pH S.C. Temp. mS/cm °C	NTU mg/L	<u></u>	_
Time: // 40 Method: Peristaltic	clerk 6.85 0.776 25.9	25 /.//		
	PURGE DATA			
Date: 073199]			
Method: Peristaltic]			
Monitor Reading (ppm): N/A	1			
Well Casing Diameter: 2 inch	See Attache	d Low Flow Purge D	ata Sheet	
Well Casing Material: PVC	<u>.</u>	for Purge Data		
Total Well Depth (ft): 39.18]			
Static Water Level (ft): 6.60				
One Casing Volume(gal/L): 3.	1			
Start Purge (hrs): /05/	,			
End Purge (hrs): 1/45	1			
Total Purge Time (min): 54	1			
	1			
Total Vol. Purged (gal(L): 9.7		ORMATION		
	SAMPLE COLLECTION INFO Preservative Container Requ		aboratory Collected	
Analysis		uirements La	aboratory Collected ENCO UCA	
Analysis VOCs	Preservative Container Requ	uirements La		
Analysis VOCs SVOCs	Preservative Container Requ HCl 2-40ml vials	airements La 3 nbers	ENCO yes	
Analysis VOCs	Preservative Container Requ HCl 2-40ml vials None 1-1Liter glass an	airements La 3 nbers	ENCO YEAL	
Analysis VOCs SVOCs	Preservative Container Requ HCl 2-40ml vials None 1-1Liter glass an	airements La 3 nbers	ENCO YEAL	
Analysis VOCs SVOCs	Preservative Container Requ HCl 2-40ml vials None 1-1Liter glass an	airements La 3 nbers	ENCO YEAL	
Analysis VOCs SVOCs	Preservative Container Requ HCl 2-40ml vials None 1-1Liter glass an	airements La 3 nbers	ENCO YEAL	
Analysis VOCs SVOCs	Preservative Container Requ HCl 2-40ml vials None 1-1Liter glass an	airements La 3 nbers	ENCO YEAL	
Analysis VOCs SVOCs Lead	Preservative Container Requestriction HCI 2-40ml vials None 1-1Liter glass and HNO3 1-250ml plast	airements La 3 nbers	ENCO YEAL	
Analysis VOCs SVOCs Lead	Preservative Container Requestration HCl 2-40ml vials None 1-1Liter glass an HNO3 1-250ml plast	airements La	ENCO ENCO LAB INFO	
Analysis VOCs SVOCs Lead	Preservative Container Requestration HCl 2-40ml vials None 1-1Liter glass an HNO3 1-250ml plast	airements La 3 nbers	ENCO ENCO LAB INFO ENCO	
Analysis VOCs SVOCs Lead	Preservative Container Requestration HCl 2-40ml vials None 1-1Liter glass an HNO3 1-250ml plast	La La La La La La La La La La La La La L	ENCO ENCO LAB INFO ENCO 4810 Executive Park Ct. Jax, FL 32216-6069	
Analysis VOCs SVOCs Lead OBSERVATION Put Submy to 3	Preservative Container Requestration HCl 2-40ml vials None 1-1Liter glass an HNO3 1-250ml plast	airements La	ENCO ENCO LAB INFO ENCO 4810 Executive Park Ct.	
Analysis VOCs SVOCs Lead	Preservative Container Requestration HCl 2-40ml vials None 1-1Liter glass an HNO3 1-250ml plast	La La La La La La La La La La La La La L	ENCO ENCO LAB INFO ENCO 4810 Executive Park Ct. Jax, FL 32216-6069	
Analysis VOCs SVOCs Lead OBSERVATION Put Submy to 3	Preservative Container Requestration HCl 2-40ml vials None 1-1Liter glass an HNO3 1-250ml plast	Lab: Lab: Lab: Lab: LAB: COC #:	ENCO ENCO LAB INFO ENCO 4810 Executive Park Ct. Jax, FL 32216-6069	
Analysis VOCs SVOCs Lead OBSERVATION Put Submy to 3	Preservative Container Requestration HCl 2-40ml vials None 1-1Liter glass an HNO3 1-250ml plast	Lab:	ENCO ENCO LAB INFO ENCO 4810 Executive Park Ct. Jax, FL 32216-6069	
Analysis VOCs SVOCs Lead OBSERVATION Put Submy to 3	Preservative Container Requestration HCl 2-40ml vials None 1-1Liter glass an HNO3 1-250ml plast	Lab: COC #:	ENCO ENCO LAB INFO ENCO 4810 Executive Park Ct. Jax, FL 32216-6069	
Analysis VOCs SVOCs Lead OBSERVATION Put Submy to 3	Preservative Container Requestration HCl 2-40ml vials None 1-1Liter glass an HNO3 1-250ml plast	LAB: COC #: LAB: COC #:	ENCO ENCO LAB INFO ENCO 4810 Executive Park Ct. Jax, FL 32216-6069 03944	
Analysis VOCs SVOCs Lead OBSERVATION Put tubing to 3	Preservative Container Requirement HCI 2-40ml vials None 1-1Liter glass and HNO3 1-250ml plast NST NOTES SG. S PT. 13TO C.	Lab: COC #:	ENCO ENCO LAB INFO ENCO 4810 Executive Park Ct. Jax, FL 32216-6069 03944	

Project / Site:		NAS Jackso	nville - Ga	as Hill		Sample ID	No.:	NASJ-159-GI		
Project No.:		N0255				Sample Lo	cation:	JAX-159-GH-	22	
, , , , , , , , , , , , , , , , , , , ,						•	al.			
[X] Monito	ring Well					Sampler:	<u>//{\}.</u>	DARA		
[] Domesti	c Well									
[] Other:						_				
				SAM	PLING DATA					
Date: {	73099	Color	рН	S.C.	Temp.	Turbidity	DO			
Time:	1543		/	mS/cm	°C	NTU	mg/L			
Method:	Peristaltic	Clear	6.1+	0.632	25.8	<u> </u>	0.89			
		1		PU	RGE DATA					
	30 <i>9</i> 9	4								
	Peristaltic	1								
Monitor Reading		-		Sac	Λ.Hooboo	Low Flow	Puras Da	ata Sheet		
Well Casing Dia				366	Allachec	for Purge l		ita Oneet		
Well Casing Mat		-				ioi i uige i	Jaia			
Total Well Depth		<u> </u> 								
Static Water Lev	70 2									
One Casing Volu										
Start Purge (hrs)	1 70 4	-								
End Purge (hrs):										
Total Purge Time	d (ga (g): 22.2									
Total Vol. Purge			SAMP	LE COLLE	CTION INFO	RMATION				
						ements Laboratory Collected				
Ana	ılysis	Preserv	ative	Cor	ntainer Requi	rements				
Ana VOCs	ilysis	Preserv: HCl		Cor	ntainer Requi 2-40ml vials	rements		ENCO	Gollected	
	ılysis		l	1-11	2-40ml vials iter glass aml	pers		ENCO ENCO		
VOCs	lysis	НСІ	e -	1-11	2-40ml vials	pers		ENCO		
VOCs SVOCs	ilysis	HCI None	e -	1-11	2-40ml vials iter glass aml	pers		ENCO ENCO		
VOCs SVOCs	lysis	HCI None	e -	1-11	2-40ml vials iter glass aml	pers		ENCO ENCO		
VOCs SVOCs	ilysis	HCI None	e -	1-11	2-40ml vials iter glass aml	pers		ENCO ENCO		
VOCs SVOCs	lysis	HCI None	e -	1-11	2-40ml vials iter glass aml	pers		ENCO ENCO		
VOCs SVOCs	ilysis	HCI None	e -	1-11	2-40ml vials iter glass aml	pers		ENCO ENCO		
VOCs SVOCs Lead	ORSERVATIO	HOINON HINO	e 3	1-11	2-40ml vials iter glass aml	pers		ENCO ENCO		
VOCs SVOCs Lead	ORSERVATIO	HOINON HINO	e 3	1-11	2-40ml vials iter glass aml	pers		ENCO ENCO		
VOCs SVOCs Lead	ORSERVATIO	HOINON HINO	e 3	1-11	2-40ml vials iter glass aml	pers		ENCO ENCO ENCO ENCO ENCO ENCO 4810 Executiv	yes V	
VOCs SVOCs Lead		HOINON HINO	e 3	1-11	2-40ml vials iter glass aml	pers	LAB:	ENCO ENCO LAB INFO ENCO 4810 Executiv Jax, FL 3221	yes V	
VOCs SVOCs Lead	ORSERVATIO	HOINON HINO	e 3	1-11	2-40ml vials iter glass aml	pers		ENCO ENCO ENCO ENCO ENCO ENCO 4810 Executiv	yes V	
VOCs SVOCs Lead	ORSERVATIO	HOINON HINO	e 3	1-11	2-40ml vials iter glass aml	pers	LAB:	ENCO ENCO LAB INFO ENCO 4810 Executiv Jax, FL 3221	yes V	
VOCs SVOCs Lead	ORSERVATIO	HOINON HINO	e 3	1-11	2-40ml vials iter glass aml	pers	LAB:	ENCO ENCO LAB INFO ENCO 4810 Executiv Jax, FL 3221	yes V	
VOCs SVOCs Lead	ORSERVATIO	HOINON HINO	e 3	1-11	2-40ml vials iter glass aml	pers	LAB:	ENCO ENCO LAB INFO ENCO 4810 Executiv Jax, FL 3221	yes V	
VOCs SVOCs Lead	tubing to	HOINON HINO	e 3	1-11	2-40ml vials iter glass aml	pers	LAB:	ENCO ENCO LAB INFO ENCO 4810 Executiv Jax, FL 3221	yes V	
VOCs SVOCs Lead	tubing to	HOINON HINO	e 3	1-11	2-40ml vials iter glass aml	pers	LAB: COC #: COC #:	ENCO ENCO ENCO ENCO ENCO 4810 Executiv Jax, FL 3221 0 394	yes V	
VOCs SVOCs Lead	tubing to	HOINON HNO	e 3	1-11	2-40ml vials iter glass aml	pers	LAB:	ENCO ENCO ENCO ENCO ENCO 4810 Executiv Jax, FL 3221 0 394	yes	

Project Site Name: Project No.: [] Domestic Well Data [X] Monitoring Well Data [] Other Well Type: [] QA Sample Type:	GA	NO?	SS		Sample ID No.: NA ST Sample Location: TAX - IS Sampled By: F. P. C.O.C. No.: 039 Type of Sample: D. Low Concentration High Concentration				9~ GH- RXLR	- 23-0 - 23
, , ,			SA	MPLING DA	Tr.					***************************************
Date: 07/29/99 Time: 1756	Color	рН	S.C.	Temp.	Turbidity NTU	DO (mg/L)	CO2	H ₂ S	Fe +2
Method: Paristaltic	//AR	617	0.474	24.7	-10	140	N/A		ļ	
, , , , ,		110-11		URGE DATA		11,72	[/ A			
Date: 07/29/99	Volume	рΗ	s.c.	Temp (°C)	Turbidity	DO	Salinity		1	•
Method: Peristantic	Initial			1	·		Ganity			
Monitor Reading (ppm):	1									
Well Casing Diameter: 2 / ペ.	2									
Well Casing Material: ♪ VC	3	7								
Total Well Depth (TD): ろんり				_ / -	L1	/)	<i>b</i> /	4		
Static Water Level (WL): 5. 29			- 44	- LON	1 Flow	- pur	P 1/2	20/	<u> </u>	
One Casing Volume(gal/1): 6.2	3.1									
Start Purge (hrs): /655										
End Purge (hrs): 1740										
Total Purge Time (min): 75								·		
Total Vol. Purged (ga(化): /ひと										
		SAMI	LE COLL	ECTION IN	ORMATION					
Analysis		Preserv			Containe		ements		Colle	cted
8021 8314		H C	4	ನ –		VIALS			Ue	0
	OIOB	nor Hn		- /-	1 Liter		2			0
	,,,,,		7		258 ML	HOP	<u> </u>		40	2
				·				• .		
									 	
					·					
				· · · · · · · · · · · · · · · · · · ·	· · · · · ·			·	<u> </u>	
	7 =		OBSERVA	TIONS / NO	TE5					
set thing	70 30	FT. I	370C						•	
\mathcal{U}			•							
										İ
Circle if Applicable:										
MS/MSD Duplicate ID No.:				S	ignature(s):				-	
A	love			ļ	800	ρ.	lu	/		
· ·				-	-100	12				·

Project / Site:								
, , , , , , , , , , , , , , , , , , , ,	NAS Jackso	onville - Ga	as Hill		Sample ID	No.:	NASJ-159-GH	+ 24-01
Project No.:	N0255				Sample Lo	ocation:	NASJ-159-GH-	244
					_			
[X] Monitoring Well					Sampler:	<u> </u>	PARKEL	
[] Domestic Well								
[] Other:	· · · · · · · · · · · · · · · · · · ·				-			
			SAMI	PLING DATA				
Date: 073 099	Color	рН	S.C.	Temp.	Turbidity	DO		
Time: +1+0 4010	1 1	~ 20	mS/cm	°C	NTU	mg/L	<u> </u>	
Method: Peristaltic	clear	5.47	0.456	25.5 RGE DATA	JS	1.29		
524 . 20			PU	KGE DATA				
Date: 073 099 Method: Peristaltic	-							
Monitor Reading (ppm): N/A	-							
Well Casing Diameter: 2 inch	╣		See	Attached	Low Flow	Purae Da	ata Sheet	
Well Casing Material: PVC					for Purge I	_		
Total Well Depth (ft): 15.03	1 .							
Static Water Level (ft): 5.70	5.65 mg							
One Casing Volume(gald): 5.6								
Start Purge (hrs): 0850	1							
End Purge (hrs):	1005							
Total Purge Time (min): 75]							
Ø 101 A	7.							
Total Vol. Purged (gall): 17L	<u> </u>							
		***********		CTION INFO				
Analysis	Preserv	ative	Con	tainer Requi			poratory ENCO	Collected
Analysis VOCs		ative	Con	tainer Requi 2-40ml vials	rements		poratory ENCO	Collected UPS
Analysis VOCs SVOCs	Preserva HCI Norw	ative	Con	tainer Requi 2-40ml vials iter glass am	rements pers		ENCO	
Analysis VOCs	Preserv: HCl	ative	Con	tainer Requi 2-40ml vials	rements pers		ENCO ENCO	
Analysis VOCs SVOCs	Preserva HCI Norw	ative	Con	tainer Requi 2-40ml vials iter glass am	rements pers		ENCO ENCO	
Analysis VOCs SVOCs	Preserva HCI Norw	ative	Con	tainer Requi 2-40ml vials iter glass am	rements pers		ENCO ENCO	
Analysis VOCs SVOCs	Preserva HCI Norw	ative	Con	tainer Requi 2-40ml vials iter glass am	rements pers		ENCO ENCO	
Analysis VOCs SVOCs	Preserva HCI Norw	ative	Con	tainer Requi 2-40ml vials iter glass am	rements pers		ENCO ENCO	
Analysis VOCs SVOCs Lead	Preserva HCI None HNO	ative	Con	tainer Requi 2-40ml vials iter glass am	rements pers		ENCO ENCO	
Analysis VOCs SVOCs Lead OBSERVATIO	Preserv: HCI None HNO	ative	Con	tainer Requi 2-40ml vials iter glass am	rements pers		ENCO ENCO ENCO	
Analysis VOCs SVOCs Lead	Preserv: HCI None HNO	ative	Con	tainer Requi 2-40ml vials iter glass am	rements pers		ENCO ENCO ENCO ENCO ENCO ENCO	yes
Analysis VOCs SVOCs Lead OBSERVATIO	Preserv: HCI None HNO	ative	Con	tainer Requi 2-40ml vials iter glass am	rements pers	LAB:	ENCO ENCO ENCO ENCO ENCO 4810 Executiv Jax, FL 3221	re Park Ct.
Analysis VOCs SVOCs Lead OBSERVATIO	Preserv: HCI None HNO	ative	Con	tainer Requi 2-40ml vials iter glass am	rements pers		ENCO ENCO ENCO ENCO ENCO A810 Executiv	re Park Ct.
Analysis VOCs SVOCs Lead OBSERVATIO	Preserv: HCI None HNO	ative	Con	tainer Requi 2-40ml vials iter glass am	rements pers	LAB:	ENCO ENCO ENCO ENCO ENCO 4810 Executiv Jax, FL 3221	re Park Ct.
Analysis VOCs SVOCs Lead OBSERVATIO	Preserv: HCI None HNO	ative	Con	tainer Requi 2-40ml vials iter glass am	rements pers	LAB:	ENCO ENCO ENCO ENCO ENCO 4810 Executiv Jax, FL 3221	re Park Ct.
Analysis VOCs SVOCs Lead OBSERVATIO	Preserv: HCI None HNO	ative	Con	tainer Requi 2-40ml vials iter glass am	rements pers	LAB:	ENCO ENCO ENCO ENCO ENCO 4810 Executiv Jax, FL 3221	re Park Ct.
Analysis VOCs SVOCs Lead OBSERVATIO	Preserv: HCI None HNO	ative	Con	tainer Requi 2-40ml vials iter glass aml -250ml plasti	pers	LAB:	ENCO ENCO ENCO ENCO ENCO 4810 Executiv Jax, FL 3221	re Park Ct.
Analysis VOCs SVOCs Lead OBSERVATIO	Preserv: HCI None HNO	ative	Con	tainer Requi 2-40ml vials iter glass aml -250ml plasti	rements pers	LAB: COC #: LAB:	ENCO ENCO ENCO ENCO ENCO 4810 Executiv Jax, FL 3221	re Park Ct.

Project N [] Dor [Moi	Site Name: No.: mestic Well Data nitoring Well Data ser Well Type: Sample Type:	· GA	HS HILL	522 F		Sample Sample C.O.C. Type of	Sample ID No.: Sample Location: Sampled By: C.O.C. No.: Type of Sample: Low Concentration High Concentration			NAST-159-GH-25-01 JRX-159-GH-25 M.DAM 03943		
	-			C A	MPLING DA			***************************************	***************************************			
Date: 0	72999,	Color	рН	s.c.	Temp.	Turbidity	200		T -00		_	
Time:	1804			mS/cm	c	NTU	Meter	mg/L) Titration	. CO₂	H ₂ S	Fe +2	
Method:	Peristaltac	clear	6.51	0.650	24.1	-10	1.65	N/A				
- 4	2200			P	URGE DAT		7	- //			•	
	72999	Volume	рН	s.c.	Temp (°C)	Turbidity	DÓ	Salinity				
Method:	Periotaltic	Initial										
Monitor Rea		1	· ·									
_	Diameter: 2 1 N	2										
Well Casing		3										
	epth (TD): 39.98			-\20	1001	Poul	1/40	\mathcal{N}	~ /			
	Level (WL): ∂ , 40			09		1 /010	Cont					
Start Purge (1.0											
End Purge (h												
Total Purge T												
Total Vol. Pur												
	3 (3-(<u>3-177</u>		SAME	I E COUL	ECTION IN	OFMATION				***************************************		
	Analysis		Preserv		508110318841	Containe		ments		Calla	Ad	
	802		HO	2	2-4	OMLV				Collec	es l	
	Ph 60	10 B	non		1-1	Liter	Ambe				es	
	15,60	10 6	HN	3	1-2	SOML	HOPE				क्र	
						:		1,				
				-								
	···						····					
 												
			·			· · ·						
	·				·						·	
									· ·			
_	7 7 7 3 3 3		t	BSERVA	TIONS / NO	TES .						
Si	t tubing to	4 37,	S FT.	BTOC			<u></u>					
	0											
arcle if Appli	-ablet			*****************							_	
MS/MSD	Duplicate ID No.:				Si	ignature(s):		1 1				
		me			1	Men	no W.	Delo				
						priem	, V.					

Project Site Name: Project No.: [] Domestic Well Data [] Monitoring Well Data [] Other Well Type: [] QA Sample Type:		GAS H	<u>'LL</u> 1 255	MAS TAY	Sample C.O.C. Type of	•	n: :: :tration	ASJ-159 TAV-15 M. DA 0399	9-614-7 Vis.	6-01
			6A	MPLING DA	TA					
Date: 072999 Time: 1615	Color	рН	S.C.	Temp.	Turbidity	DO (mg/L) Titration	CO₂	H ₂ S	Fe +2
Method: Deristatic	It. Yellow	6.17	0.629		-/0	1.45			 	
		1 (77)		URGE DATA		11.13	NA			
Date: 07 19 99	Volume	pН	s.c.	Temp (°C)	***************************************	DO	Salinity			
Method: Paristeltic	Initial									
Monitor Reading (ppm): N/A	1									
Well Casing Diameter: 2 (1)	2									
Well Casing Material: PVC	3						-		 	
Total Well Depth (TD): //8/			50	, /	r,	D	11	A		
Static Water Level (WL): 2,53			74	- Lout	-/w 1	mze	Thei	#		
One Casing Volume(gal(C): 5.7						0		<u> </u>		
Start Purge (hrs): 1519										
End Purge (hrs): [6[3		- 1								
Total Purge Time (min): 53										
Total Vol. Purged (gal/L): [8.6]										
A. bada				ECTION INF	ORMATION					
Analysis	0218	Preserva			Container		ments		Collec	ted
	3310	HC		2-401					40.	2
	6010B		HO .		SOML	M BER HDPE	,		yes	
					30716	TIDYE	 -		ye	4
										
				.						
······································			- -		· · · · · · · · · · · · · · · · · · ·					
									-	
			1							4
										-
										
set hibis	285		BSERVA	Tions / No	TE5					
set husing 1	o 8 FT	, BTOC	BSERVA	THONS / NO	ŢES.					
set his ny 1	o 8 FT	E, BTOC	BSERVA	TIONS/NO	TE5					
set husing 1	778 0	, orac	BSERVA	OM: SMOLT	TE5					
	to 8 FT	, 0TOC	BSERVA							
Circle if Applicable:		, BTOC		Si	ignature(s):		<u> </u>			
Sircle if Applicable:		, BTOC		Si		in /).	Sale			

Project Site Name Project No.: [] Domestic We [] Monitoring W [] Other Well Ty [] QA Sample T	ell Data /ell Data /pe:	GAS	PILL	_ N	AS JIX	Sample C.O.C. Type of [X] Lov		en: et . otration	VAST-15 TAX-15 E, P) 039	59-64- ARKER	27-01 -27
					~~~~						
Date: 07/よら	<del>99</del> 1	Color	рH		MPLING D						
Time:			Pn	S.C.	Temp.	Turbidity NTU		mg/L)	CO2	H ₂ S	Fe +2
Method: Parist	altic	doas	6.39	0.647	24.5		Meter	Titration		<u> </u>	
	<u> </u>	00-7.	9.5		URGE DAT		1.56	NA		<u> </u>	
Date: 67/29/9	19	Volume	pН	s.c.	Temp (°C)		20			<del></del>	•
Method: Out offe	Chal	Initial		3.5.	Temp ( C)	Turbidity	DO	Salinity		<del> </del>	
Monitor Reading (ppm):		1	<del></del>							ļ	
Well Casing Diameter:		2								<u> </u>	
Well Casing Material:	PVC T	3		<del></del>							
Total Well Depth (TD): 2				-1-1		6	<i>(</i> )	1	<u></u>		
Static Water Level (WL):		<del></del>		Jeg	Lon	1 low	ng	Thec	<u>X</u>		
One Casing Volume(gal/	C): 3.11		<del></del>				0				
Start Purge (hrs): /5											
End Purge (hrs): /60			7.1	<del></del>							
Total Purge Time (min):				<del></del>							
Total Vol. Purged (gal/L):	10				<del></del>						
	7.5		SAMP	I E COLUM	iore over 1	ORMATION					
Analysi	S		Preserva			Containe		4-			
	80216		HC		2-	40 M1	VIAL			Collec	
<b>1</b> N 1	8310		My	e.	1-	1 Liter			<del></del>	1/2	
<i>Pb</i>	6016	λR	1-47	10,	1		HOPE			20	
<del> </del>	·				···	:		ų.		1	
					<del></del>						
					<del></del>	·					
				<del></del>						<del></del>	
٠.					<del></del>						
										<del></del>	
<del></del>	<del></del> _										
					~~~	000000000000000000000000000000000000000	200000000000000000000000000000000000000				
: c.L.1.1	ナン	<u> </u>		ESERVA	MONS / NO	TES					
set tulong a	J 27	1-1.B7	roc.	•							l
U				•							
ircle if Applicable;										·	
MS/MSD Duplicate II	O No.:				Si	gnature(s):					
	None					Enci	Pale	_			

Project N [] Don [X] Mor [] Other	ite Name: lo.: nestic Well Data nitoring Well Data er Well Type: Sample Type:	GAS HILL 0255				Sample ID No.: MASJ Sample Location: JAX- Sampled By: M C.O.C. No.: Type of Sample: M Low Concentration [] High Concentration				59-GH 2-GH-2 ALE 73	1-28- 28
				SA	MPLING DA	(TA				***************************************	000000000000000000000000000000000000000
Date: (7/29/99	Color	pН	S.C. mS/cm	Temp.	Turbidity NTU	DO (mg/L) Titration	CO₂	H ₂ S	Fe +2
Method:	eristantic	dear	6.74	0.519	25.8	-10	1.96	NIA			
				***************************************	JRGE DAT		17.70	1_/9//1			
Date:	07/29/99	Volume	рH	s.c.	Temp (°C)	Turbidity	DO	Salinity			
	Peristantic	Initial							<u></u>		
Monitor Read		1									
Well Casing		2									
Well Casing		3									
	epth (TD): 3 4.20			See	m.	lan od	V \8 .	Les &			
Static Water	Level (WL): 2.60				7			Ce >			
	Volume(gal/1): 3.										
Start Purge (i											
End Purge (h											
Total Purge T											
Total Vol. Pur	ged (gal/L) //. 2										
					ECTION IN	ORMATION					
	Analysis (O)		Preserv			Containe				Collect	ted
	82	0	HC		<u> </u>	40 ML				ye.	,
	head 60	10B	146		1-	1 Citer 250 Mi				<u>"ges</u>	
			1:- -	3		JJV MIC	- HVI	رح		yes	' ——
				•				·			
											
			-								
											
		/ .		DBSERVA	TIONS / NO) TES					
SUrean = 5	sfoot; It to	.birs at.	33 FT, E	BTOC.							
	V	,		•							
Circle if Applic	-shiet					 	·				
MS/MSD	Duplicate ID No.:					ignature(s):	,	1			
<u></u>		None				Meiom	,\	$\lambda \ell_{-}$			
		INIU	·			· (who	ω_{\perp}	100			

[/X] Mon			GAS HILL 0285				Sample Location: JAX- Sampled By:				159-GH-29-01 -159-GH-29 3943		

Date: /	07/29/99	Color	pН	S.C.	MPLING DA	******************	T		T				
Time:	1429		".	mS/cm	Temp.	Turbidity NTU	DO (rng/L) .	CO2	H ₂ S	Fe +2		
Method:	existante	dear	6.03	0.413	25.8	272	1,29		 	 	-		
			1 1/1 -		URGE DATA		1101	N/H	<u> </u>				
Date: <i>8</i>	7/29/99	Volume	pН	s.c.	Temp (°C)	Turbidity	DO	Salinity		Τ			
Method:	Varistantic	Initial								┿──			
Monitor Read		1				÷			<u> </u>				
	Diameter: 2 / 씨 .	2											
	Material: PVC	3						· ·		 			
	pth (TD): /3./0			SE	E low	FLOW	Pire	e <10	4	 			
	Level (WL): 3.12						150	- 0/-		 			
	olume(gal/L): 6.2									 			
Start Purge (h										 			
End Purge (hr	14.2		N.							 			
Total Purge Ti										 			
Total Vol. Purg	ged (gal(y): <u>36.25</u>									 	\		
	• •				ECTION INF	ORMATION							
	Analysis 802	, , , , , , , , , , , , , , , , , , , 	Preserv			Container				Colle	cted		
	F3/		HC 40		<u> </u>	GO ML				Nex	, \		
	Ph 601			re 1	<u> </u>	1 Life		n bel		hje			
				-		:	C FIR	OPK		190	2		
										 			
										†			
										<u> </u>			
	*.				—								
										 			
										 			
		***************************************	•		·					 			
1] د د	· + 8/ CT	9-	Ţ.	BSERVA	TIONS / NO	TES							
set tub	ing at 8 FT	570C.											
	V			•									
											1		
ircle if Applica	- klys			***************************************									
MS/MSD	Duplicate ID No.:				Si Si	gnatufre(s): }}/	1	1					
1		None	-		1	ignature(s):	W D	de					

Project Site Name: Project No.: [] Domestic Well Data [] Monitoring Well Data	. (CAS HILL NUSS			Sample Location: Sampled By: C.O.C. No.: Type of Sample:			SJ-159-6H-30-01 JAX-159-6H-30 E. HAKKIN 03943		
Other Well Type: OA Sample Type:						v Concer		•		
		000000000000000000000000000000000000000				h Conce	ntration		•	
Date: 07/29/59	Color	-u		MPLING DA						
Time: 1425	00.0,	pН	S.C. mS/cm	Temp.	Turbidity NTU	DO (mg/L) . Titration	CO2	H₂S	Fe +2
Method: Paristantic	clear	6.01	0.440		-10	2.72	N/A			
			P	URGE DAT						
Date: 07/39/49	Volume	рН	s.c.	Temp (℃)	Turbidity	DO	Salinity			
Method: Varistalac	Initial									
Monitor Reading (ppm): ハイ	1									
Well Casing Diameter: 2 M.	2									
Well Casing Material: ₽٧८	3									
Total Well Depth (TD): 13.65			2		VI)	(1 a)			
Static Water Level (WL): 2,50			Hed	- ron	WW 1	WIL	heet			
One Casing Volume(gal(L): 6.8										
Start Purge (hrs): 13 15										
End Purge (hrs): 14 20		*.1								
Total Purge Time (min): /hr 5m	·									
Total Vol. Purged (gal/C): 23 L										
Analysis				ECTION INF	ORMATION					
8021	R	Preserv.		2-	Containe 40 Mc				Collec	
8310				<u> </u>	1 Lite	Vial 5			<u> 40</u>	
Ph. 6016	B	HN		1-	250 ML		PE		yo ye	
					:				<u></u>	<u> </u>
										
				· · · · · · · · · · · · · · · · · · ·						
				-	·					
										
					•		···			
				***		*************	***************************************			
set tubing to 8	() D+	- 14	JESERVA	TIONS / NO) E5					
xx 100700 10 0	1-1. \(\rightarrow\)	00							•	1
										1
Circle if Applicable:				2	ignature(s):					
MS/MSD Duplicate ID No.:)A A [_				
N. I	Non				Erc	Palh				

Project Site Name: Project No.: [] Domestic Well Data [X] Monitoring Well Data [] Other Well Type: [] QA Sample Type:		AS HI	L NI	A SJAX	Sample Sample C.O.C. Type o		on: e: otration	NASJ- JAX-1. E. PA. 039	59 - 614 · RK&R	31-0
			***********	***************************************						
Date: 07/29/99	Color	-u	,	MPLING DA	***************************************					
Time: 1015 1/37	MO	PH	S.C.	Temp.	Turbidity		mg/L)	CO2	H ₂ S	Fe +2
Method: Peristatic	Cleak	6.46		°C	NTU	Meter	Tibation			
10012/112/112	TONNI	14-16	.435	127.6	-10	3.14	N/A			
Date: 07/29/99	Volume	рН	S.C.	URGE DAT						
Method: Paristantic	Initial			Temp (°C)	Turbidity	DO	Salinity			
Monitor Reading (ppm): NA	1									
Well Casing Diameter: 교 시	2	·								
Well Casing Material: ₽VC	3									
Total Well Depth (TD):), 45	-									
Static Water Level (WL): 2, 84	MA		_Se	2 Lay	FLow	Dus	e shee	x x		
One Casing Volume(gal/L): 5.9	72-					1 /				
Start Purge (hrs): 1015										
End Purge (hrs): 1 35							I			
Total Purge Time (min): 11, 10,	- Ca.	, - 								
Total Vol. Purged (gal(L): /8,000	- 101	~								
78000	16- 1816						· .			
Analysis		Preserva	tive	CHONINE	ORMATION					
(YOA:) 80211	8	HC		2 - 4	Container	Require	ments		Collect	ed
(SVOA) 8310		Tone		1- 1	Liter	Amba			yes	
(Lead) 6010	8	HNO		1 - 25	727	2/ As to			yes	
			,		:	7	i,		yes	/
										
										
										
- · · · · · · · · · · · · · · · · · · ·										

· Ct II · C		0	BSERVA	NONS / NO	ES					
· Set tubing at 8	17 737	OC.	•							
•			•	,						1
										- 1
ircle if Applicable:				00000000000000000000000000000000000000						
MS/MSD Duplicate ID No.:				Sig	nature(s):					
	one					Ω	,			
					ru	Par				

Project	/ Site:	NAS Jacks	sonville - G	AS HILL		Sample ID	No.:	NASJ-159-G	H-32-02
Project	No.:	N0255.FB0	0.050.230			Sample Lo		GH 32	
		-				-		DARKER	
, , ,	Monitoring Well					Sampler:	<u> </u>	PARKEK	
1	omestic Well								
[] Ot	her:					-		·	
					PLING DATA				
Date:	9/2/1999	Color	pH S.U.	S.C. mS/cm	Temp. °C	Turbidity NTU	DO mg/L	Salinity ppt	
Time: Method:	Peristattic	Cloudy	6.31	.375	26.0	280	0.35		
Metrod.	L GIIORTIA		10,5.		RGE DATA		0137		<u> </u>
Date:	9/2/1999	<u> </u>	<u></u>	<u>ininininininganana</u> .	i i i i i i i i i i i i i i i i i i i		::::::::::::::::::::::::::::::::::::::		
Method:	Peristaltic	1							
Monitor R	Reading (ppm): N/A	1							
Well Casi	ing Diameter: 0.5 in.			See	Attached	Low Flow	Purge Da	ata Sheet	
Well Casi	ing Material: PVC				•	for Purge I	Data		
	Il Depth (TD): //.5 F1.								
	iter Level (WL): 1,92								
One Casir	ng Volume(gal () : 0, 3)								
Start Purg		!							
End Purge									
	ge Time (min): 6								
T-4-11/-1	Purged (gal/L): 2, (114-15							
iotai voi.	Pulged (gave).	000000000000000000000000000000000000000	BAND	TEASUE	ATTAN INEO				
iotal vol.		Presen		************	CTION INFO		Lat	ooratory	Collected
VOCs	Analysis 8021B		vative	Con	CTION INFO			poratory ENCO	Collected
VOCs	Analysis	Presen	vative	Con	tainer Requi	rements	E		Collected 900
VOCs SVOCs	Analysis 8021B	Presen HC	vative Cl ne	Con	tainer Requir 2-40ml vials	rements pers	E	NCO	700
	Analysis 8021B 8310	Presen HC Nor	vative Cl ne	Con	tainer Requir 2-40ml vials iter glass amb	rements pers	E	ENCO ENCO	900 900
VOCs SVOCs	Analysis 8021B 8310	Presen HC Nor	vative Cl ne	Con	tainer Requir 2-40ml vials iter glass amb	rements pers	E	ENCO ENCO	900 900
VOCs SVOCs	Analysis 8021B 8310	Presen HC Nor	vative Cl ne	Con	tainer Requir 2-40ml vials iter glass amb	rements pers	E	ENCO ENCO	900 900
VOCs SVOCs	Analysis 8021B 8310	Presen HC Nor	vative Cl ne	Con	tainer Requir 2-40ml vials iter glass amb	rements pers	E	ENCO ENCO	900 900
VOCs SVOCs	Analysis 8021B 8310	Presen HC Nor	vative Cl ne	Con	tainer Requir 2-40ml vials iter glass amb	rements pers	E	ENCO ENCO	900 900
VOCs SVOCs	Analysis 8021B 8310	Presen HC Non HNC	vative Cl ne	Con	tainer Requir 2-40ml vials iter glass amb	rements pers	E	ENCO ENCO	900 900
VOCs SVOCs Pb	Analysis 8021B 8310 6010B	Presen HC Nor HNC	vative DI THE DISTRIBUTION DIST	Con	tainer Requir 2-40ml vials iter glass amb	rements pers	E E	ENCO ENCO ENCO	900 900
VOCs SVOCs Pb	Analysis 8021B 8310 6010B	Presen HC Nor HNC	vative DI THE DISTRIBUTION DIST	Con	tainer Requir 2-40ml vials iter glass amb	rements pers	E	ENCO ENCO ENCO ENCO ENCO ENCO	900 900 900
VOCS SVOCS Pb	Analysis 8021B 8310 6010B OBSERVATION (0) = 0.01 ga	Presen HC Nor HNC	vative Cl ne D3	Con	tainer Requir 2-40ml vials iter glass amb	rements pers	LAB:	ENCO ENCO ENCO ENCO ENCO 4810 Executive Jacksonville,	ges ges ges ge Park Ct.
VOCS SVOCS Pb	Analysis 8021B 8310 6010B OBSERVATION (0) = 0.01 ga	Presen HC Nor HNC	vative Cl ne D3	Con	tainer Requir 2-40ml vials iter glass amb	rements pers	E E	ENCO ENCO ENCO ENCO ENCO 4810 Executiv	ges ges ges ge Park Ct.
VOCS SVOCS Pb	Analysis 8021B 8310 6010B	Presen HC Nor HNC	vative Cl ne D3	Con	tainer Requir 2-40ml vials iter glass amb	rements pers	LAB:	ENCO ENCO ENCO ENCO ENCO 4810 Executive Jacksonville,	ges ges ges ge Park Ct.
VOCS SVOCS Pb	Analysis 8021B 8310 6010B OBSERVATION (0) = 0.01 ga	Presen HC Nor HNC	vative Cl ne D3	Con	tainer Requir 2-40ml vials iter glass amb	rements pers	LAB:	ENCO ENCO ENCO ENCO ENCO 4810 Executive Jacksonville,	ges ges ges ge Park Ct.
VOCS SVOCS Pb	Analysis 8021B 8310 6010B OBSERVATION (0) = 0.01 ga	Presen HC Nor HNC	vative Cl ne D3	Con	tainer Requir 2-40ml vials iter glass amb	rements pers	LAB:	ENCO ENCO ENCO ENCO ENCO 4810 Executive Jacksonville,	ges ges ges ge Park Ct.
VOCS SVOCS Pb Wel / Vo	Analysis 8021B 8310 6010B OBSERVATION (Cy = 0.01 gallor) (OL = 0.37 Tubing at	Presen HC Nor HNC	vative Cl ne D3	Con	tainer Requii 2-40ml vials iter glass amb -250ml plastic	rements Pers	LAB:	ENCO ENCO ENCO ENCO ENCO 4810 Executive Jacksonville,	ges ges ges ge Park Ct.
VOCS SVOCS Pb	Analysis 8021B 8310 6010B OBSERVATION (Cy = 0.01 gallor) (OL = 0.37 Tubing at	Presen HC Nor HNC	vative Cl ne D3	Con	tainer Requii 2-40ml vials iter glass amb -250ml plastic	rements pers Signature(s)	LAB: COC #: COC #:	ENCO ENCO ENCO ENCO ENCO 4810 Executive Jacksonville,	900 900 900 900 900 900 900 900 900 900

Project / Site: Project No.:		NAS Jacks		AS HILL	-· <u></u>	Sample II Sample L		NASJ-159-GI	H- 33 -02
[X] Monito [] Domesti [] Other:	•					Sampler:	E.PA	RKER	
Method: Date: Method: Monitor Reading Well Casing Dian Well Casing Mate Total Well Depth Static Water Leve One Casing Volu Start Purge (hrs):	neter: 0.5 in. erial: PVC (TD):	cioudy	pH S.U. S. いら	s.c. mS/cm . ጊዛዓ	PLING DATA Temp. °C 27. % RGE DATA	Turbidity NTU 166 Low Flow for Purge	•	Salinity ppt	
Total Purge Time Total Vol. Purged Anal VOCs SVOCs Pb	(gaVL): 1.8	Preserva HCI None HNOS	ative	Con	CTION INFOI tainer Requir 2-40ml vials iter glass amb -250ml plastic	ers	E	oratory NCO NCO	Collected
	OBSERVATIONS	3/NOTES		-				LAB INFO	
	0.34 L : S bing to 7 F	VOL = 1. T. BTOC	7 Lite	AT.			•	ENCO 4810 Executive Jacksonville, F 159- 7	
Check if Collected MS / MSD	DUPLICATE /	ID No.:	ND		S	ignature(s):	c Pole		

							
Project / Site	:	NAS Jacksonville - GA	S HILL	Sample ID		NASJ-159-GI	+ 34 -02
Project No.:		N0255.FB0.050.230		Sample Lo	ocation:	GH- 34	
[X] Monito	oring Well			Sampler:)N	GH-34	
[] Domest	-			Campion.		11 VIVO	
	ic weii	•					
[] Other:				***********			
	9/2/1999	Color pH	SAMPLING DATA S.C. Temp.	Turbidity	DO	Salinity	
Date:	1711	S.U.	mS/cm °C	NTU	mg/L	ppt	
	Peristaltic	clear 6.18	0.325 28.0	645	3,99		
			PURGE DATA				
Date:	9/2/1999						-
Method:	Peristaltic						
Monitor Reading	g (ppm): N/A						
Well Casing Dia	meter: 0.5 in.		See Attached		•	ta Sheet	
Well Casing Ma	terial: PVC		1	for Purge I	Data		
Total Well Depth							
	vel (WL): 3.20 FY.						
One Casing Vol							
Start Purge (hrs							
End Purge (hrs):							
Total Purge Time							
Total Vol. Purge	d (ga/N): <u>0,85</u>	SAMPI	E COLLECTION INFOR	MATION			
Ana	ılysis	Preservative	Container Require		Lab	oratory	Collected
VOCs	8021B	HCI	2-40ml vials		E	NCO	1190
SVOCs	8310	None	1-1Liter glass ambe	ers	E	NCO	yes
Pb	6010B	HNO3	1-250ml plastic	· 	E	NCO	yes
			•				/
							,
				<i>3</i> * ,			
			3.				
	OBSERVATION					LAB INFO	
1 VOL = 1	0.38 L 5 Vor	1.8L	÷		LAB:	ENCO	
			بد ال	5./64		4810 Executiv	
AT 1711, Sh	int off limp be	or Smin, to recu	when he fore such	incar.	COC #:	Jacksonville, 159- $\stackrel{?}{\sim}$	FL 32216
1716-11 1016-11	and start in t	this manner unti	over the collect . mber before suck I svok and mulil	s Fefall.	LAB:		
			the full whom		000 "		
1747 U.L.	= 4.62 FT.			ubing!	COC #:		
Check if Collecte	sid:		s	ignature(s):			
MS/MSD	DUPLICATE	/ ID No.: NO					
			— — — — — — — — — — — — — — — — — —				

Project / Sit	e:	NAS Jacksonvil	le - GAS HILL		Sample IE) No :	NASJ-159-G	H 25-02
Project No.:		N0255.FB0.050			Sample Lo		GH- 35	- 20-در ل۱۴
					<u> </u>			
	toring Well				Sampler:	Erve	Perler	-
1	stic Well							
[] Other:	· · · · · · · · · · · · · · · · · · ·				<u>-</u>			
Date:	9/2/199	Olor I		LING DATA	*******************	l po	J	
Time:	1435_	-	pH S.C. S.U. mS/cm	Temp. °C	Turbidity NTU	DO mg/L	Salinity ppt	
Method:	Peristaltic	cloar 6	02 0.570	26.4	2	0.49	 	
				RGE DATA				
Date:	9/2/1999	2						
Method:	Peristaltic	-						
Monitor Readir Well Casing Di			Soo	Attachac	d Low Flow	Puras De	to Choot	
Well Casing M			066	Allachec	for Purge [_	ila Sheel	
	oth (TD): 24,5 #1				ioi i digo i	·		
	evel (WL): 16,43 Fr							
One Casing Vo	olume(gal(L): 0.3							:
Start Purge (hr	rs): 1420							
End Purge (hrs								
Total Purge Tir	_	İ						
T + 11/ + D	14 10 1 1 64 4	1 ' 1						
Total Vol. Purg	ed (gal/L): 1.8 L	liters	SAMPLE COLLE	CTION INFO	PMATION			
	ed (gal/L): 「,分(nalysis	 	SAMPLE COLLE	CTION INFO tainer Requi		Lab	oratory	Collected
			e Con				oratory NCO	Collected
ηA	nalysis	Preservative	e Con	tainer Requi	rements	E		
Ar VOCs	паlysis 8021В	Preservative HCI	e Con	tainer Requi 2-40ml vials	rements pers	E	NCO	
Ar VOCs SVOCs	8021B 8310	Preservative HCI None	e Con	tainer Requi 2-40ml vials ter glass amb	rements pers	E	NCO	nes
Ar VOCs SVOCs	8021B 8310	Preservative HCI None	e Con	tainer Requi 2-40ml vials ter glass amb	rements pers	E	NCO	nes
Ar VOCs SVOCs	8021B 8310	Preservative HCI None	e Con	tainer Requi 2-40ml vials ter glass amb	rements pers	E	NCO	nes
Ar VOCs SVOCs	8021B 8310	Preservative HCI None	e Con	tainer Requi 2-40ml vials ter glass amb	rements pers	E	NCO	nes
Ar VOCs SVOCs	8021B 8021B 8310 6010B	Preservative HCI None HNO3	e Con	tainer Requi 2-40ml vials ter glass amb	rements pers	E	NCO NCO	nes
Ar VOCs SVOCs Pb	8021B 8021B 8310 6010B	Preservative HCI None HNO3	e Con	tainer Requi 2-40ml vials ter glass amb	rements pers	E	NCO	nes
Ar VOCs SVOCs Pb	8021B 8021B 8310 6010B	Preservative HCI None HNO3	e Con	tainer Requi 2-40ml vials ter glass amb	rements pers	E	NCO NCO	nes
Ar VOCs SVOCs Pb	8021B 8021B 8310 6010B	Preservative HCI None HNO3	e Con	tainer Requi 2-40ml vials ter glass amb	rements pers	E E	LAB INFO ENCO 4810 Executiv	e Park Ct.
Ar VOCs SVOCs Pb	8021B 8021B 8310 6010B	Preservative HCI None HNO3	e Con	tainer Requi 2-40ml vials ter glass amb	rements pers	E E	INCO INCO INCO INCO INCO INCO INCO INCO	e Park Ct.
Ar VOCs SVOCs Pb	8021B 8021B 8310 6010B	Preservative HCI None HNO3	e Con	tainer Requi 2-40ml vials ter glass amb	rements pers	LAB:	LAB INFO ENCO 4810 Executiv Jacksonville, F	e Park Ct.
Ar VOCs SVOCs Pb	8021B 8021B 8310 6010B	Preservative HCI None HNO3	e Con	tainer Requi 2-40ml vials ter glass amb	rements pers	E E E LAB:	LAB INFO ENCO 4810 Executiv Jacksonville, F	e Park Ct.
Ar VOCs SVOCs Pb	8021B 8021B 8310 6010B	Preservative HCI None HNO3	e Con	tainer Requi 2-40ml vials ter glass amb	rements pers	LAB:	LAB INFO ENCO 4810 Executiv Jacksonville, F	e Park Ct.
Ar VOCs SVOCs Pb set tobin well cap Swell VO	068ERVATION 2 0.01 g. 2/ 2 1.5 Lif	Preservative HCI None HNO3	e Con	tainer Requi 2-40ml vials ter glass amb -250ml plastic	pers	LAB: COC #: COC #:	LAB INFO ENCO 4810 Executiv Jacksonville, F	e Park Ct.
Ar VOCs SVOCs Pb	068ERVATION 2 0.01 g. 2/ 2 1.5 Lif	Preservative HCI None HNO3	e Con	tainer Requi 2-40ml vials ter glass amb -250ml plastic	rements pers	LAB: COC #: COC #:	LAB INFO ENCO 4810 Executiv Jacksonville, F	e Park Ct.

		****	``	o 1 15	• •	******	. 21
Project / Site:		NAS Jacksonville - G.	AS HILL	Sample ID		NASJ-159-GH	-02 ميك +
Project No.:		N0255.FB0.050.230		Sample Lo	cation:	GH- 36	
[X] Monitori	ina Well			Sampler:	M. 1)AU	:
[] Domestic	-				<u> </u>) · (• <u>C</u>	
[] Other:	•••						
			SAMPLING DATA				
Date:	9/2/1999	Color pH	S.C. Temp.	Turbidity	DO	Salinity	<u> </u>
Time:	1442	S.U.	mS/cm °C	NTU	mg/L	ppt	
Method: Pe	eristaltic	(ldyklan 5.5)	0.125 26.7	97	1.29		
			PURGE DATA				
Date:	9/2/1999	4					
	eristaltic	Į					
Monitor Reading (p		Į ·	An and and		. . D.	. 0	
Well Casing Diame			See Attached		_	ata Sheet	
Well Casing Mater	- / / -		ī	or Purge D	Data		
Total Well Depth (- 4					4	
Static Water Level							
One Casing Volum							
Start Purge (hrs):	1428						
End Purge (hrs):	1436						
Total Purge Time (
Total Vol. Purged ((ga/L): 2.4						
		SAMP	F COLLECTION INFOR	MATION			
Analy	sis	SAMP Preservative	LE COLLECTION INFOR Container Require	10101010101010101010101010101	Lat	ooratory	Collected
Analy VOCs	esis 8021B			10101010101010101010101010101		ooratory ENCO	Collected UZo
		Preservative	Container Require	ements	E		yes
VOCs	8021B	Preservative HCI	Container Require 2-40ml vials	ements	E	NCO	400
VOCs SVOCs	8021B 8310	Preservative HCl None	Container Require 2-40ml vials 1-1Liter glass ambe	ements	E	ENCO ENCO	yes
VOCs SVOCs	8021B 8310	Preservative HCl None	Container Require 2-40ml vials 1-1Liter glass ambe	ements	E	ENCO ENCO	400
VOCs SVOCs	8021B 8310	Preservative HCl None	Container Require 2-40ml vials 1-1Liter glass ambe	ements	E	ENCO ENCO	400
VOCs SVOCs	8021B 8310	Preservative HCl None	Container Require 2-40ml vials 1-1Liter glass ambe	ements	E	ENCO ENCO	400
VOCs SVOCs	8021B 8310	Preservative HCl None	Container Require 2-40ml vials 1-1Liter glass ambe	ements	E	ENCO ENCO	400
VOCs SVOCs Pb	8021B 8310 6010B	Preservative HCI None HNO3	Container Require 2-40ml vials 1-1Liter glass ambe	ements	E	ENCO ENCO	400
VOCs SVOCs Pb	8021B 8310 6010B	Preservative HCI None HNO3	Container Require 2-40ml vials 1-1Liter glass ambe	ements	E E	ENCO ENCO ENCO LAB INFO	400
VOCs SVOCs Pb	8021B 8310 6010B	Preservative HCI None HNO3	Container Require 2-40ml vials 1-1Liter glass ambe	ements	E	ENCO LABINEO ENCO	400 400 400
VOCs SVOCs Pb	8021B 8310 6010B	Preservative HCI None HNO3	Container Require 2-40ml vials 1-1Liter glass ambe	ements	E E	ENCO ENCO ENCO ENCO ENCO A810 Executiv	yeo geo geo
VOCs SVOCs Pb	8021B 8310 6010B	Preservative HCI None HNO3	Container Require 2-40ml vials 1-1Liter glass ambe	ements	E E	ENCO LABINEO ENCO	yeo geo geo
VOCs SVOCs	8021B 8310 6010B	Preservative HCI None HNO3	Container Require 2-40ml vials 1-1Liter glass ambe	ements	LAB:	ENCO ENCO ENCO ENCO ENCO 4810 Executiv Jacksonville, I	yeo geo geo
VOCs SVOCs Pb	8021B 8310 6010B	Preservative HCI None HNO3	Container Require 2-40ml vials 1-1Liter glass ambe	ements	LAB:	ENCO ENCO ENCO ENCO ENCO 4810 Executiv Jacksonville, I	yeo geo geo
VOCs SVOCs Pb	8021B 8310 6010B	Preservative HCI None HNO3	Container Require 2-40ml vials 1-1Liter glass ambe	ements	LAB:	ENCO ENCO ENCO ENCO ENCO 4810 Executiv Jacksonville, I	yeo geo geo
VOCs SVOCs Pb	8021B 8310 6010B	Preservative HCI None HNO3	Container Require 2-40ml vials 1-1Liter glass ambe 1-250ml plastic	ements	LAB: COC #: COC #:	ENCO ENCO ENCO ENCO ENCO 4810 Executiv Jacksonville, I	yeo geo geo
VOCs SVOCs Pb	8021B 8310 6010B OBSERVATION O. 1 gcl of	Preservative HCI None HNO3	Container Require 2-40ml vials 1-1Liter glass ambe 1-250ml plastic	ements	LAB: COC #: COC #:	ENCO ENCO ENCO ENCO ENCO 4810 Executiv Jacksonville, I	yeo geo geo
VOCS SVOCS Pb ONL VOLE (5 Vole (5 Vole (5 Vole (5 Vole (5 Vole (6 Vole (6 Vole (7 Vo	8021B 8310 6010B OBSERVATION O. 1 gcl of	Preservative HCI None HNO3 SINOTES 0,38 Litus 1,9 L. Ach	Container Require 2-40ml vials 1-1Liter glass ambe 1-250ml plastic	ements	LAB: COC #: COC #:	ENCO ENCO ENCO ENCO ENCO 4810 Executiv Jacksonville, I	yeo geo geo

Project / S Project No		NAS Jacksonville - G/ N0255.FB0.050.230	AS HILL	Sample ID No.		.sj-159-gh + }7	- 37-02
[X] Mor [] Dome [] Other				Sampler:	1. De		
Well Casing I Well Casing I Total Well De	pth (TD): +> 2(F .evel (WL): /2.59F olume(gaØ): 0,32 rs): /5/5	s.u. Loudy 5,94	SAMPLING DATA S.C. Temp. mS/cm °C 0.293 25.9 PURGE DATA See Attached L	NTU 1	ng/L 1,90	Salinity ppt Sheet	
Total Purge T Total Vol. Pur	me (min): 5	Preservative HCI None HNO3	LE COLLECTION INFORM Container Requirer 2-40ml vials 1-1Liter glass amben 1-250ml plastic	nents	Laborato ENCC ENCC ENCC)	Collected yes yes
							7
/ vol set	OBSERVATION = 0.32 57	sinotes Val = 1.6 L problaco		CO	481 Jac C #: 3:	LAB INFO CO 0 Executive ksonville, Fi 159- 2	Park Ct. _ 32216
Check if Colle	/	/ ID No. 4) A ST 1	Sig	nature(s):	بهار کاد	le	
MS/MSD	DUPLICATE	/ ID NO:: NA(2.0 ~ \2	59-64-DUQ1-02				·

Project / S Project No		NAS Jackson N0255.FB0		AS HILL		Sample II Sample L		NASJ-159-G GH- 35	GH- <i>38</i> -02	
	nitoring Well estic Well r:					Sampler:	<u>E.</u>	PARKER		
Date:	9/2/1999	Color	рН	SAM S.C.	PLING DATA Temp.	Turbidity	DO	Salinity		
Time:	030	_	S.U.	mS/cm	°C	NTU	mg/L	ppt		
Method:	Peristaltic	BRN	5.90	.187	24.6	213	1.06			
	0/0/4000			PU	RGE DATA					
Date:	9/2/1999									
Method:	Peristaltic									
	ling (ppm): N/A			C		l I am Man	D D.	-t- Ob 1		
_	Diameter: 0.5 in.			See		Low Flow	•	ata Sneet		
Well Casing I						for Purge I	Dala			
	epth (TD):	_								
	/olume(gal/L)): (), 2(6	-								
	nrs): 1015									
End Purge (h										
	rs): 10 20 ime (min): 5									
Total Vol. Pur		مہ سا								
			SAMP	E COLLE	CTION INFO	RMATION				
A	nalysis	Preserva	ative	Con	tainer Requi	rements	Lat	oratory	Collected	
VOCs	8021B	HCI			2-40ml vials		E	ENCO	aes	
SVOCs	8310	None	,	1-1L	iter glass amb	ers		ENCO	1	
Pb	6010B	HNO	3	1	-250ml plastic		E	ENCO		
						_				
<u> </u>										
	OBSERVATIONS	/NOTES						LAB INFO		
1 (0 .			121	- 1						
110 6	0.26 Lites 5	•	1.7 L	(100)			LAB:	ENCO		
gest tob	12 40 18.2	+1, BT	sc,					4810 Executiv	e Park Ct.	
						ł	COC #:	Jacksonville, I	L 322 10	
						-			·	
						İ	LAB:			
	0					i				
msmoo	Label = NA	55-159	· 64-	MSMSD	1-02		COC #:			
Check if Colle	cled:				s	Signature(s):				
MS/MSD	DUPLICATE /	ID No.:	Mone	; •		Eri Pal	/			
						on Ide				

Project / Site		NAS Jacksonville - G N0255.FB0.050.230		Sample ID No.: Sample Location:	NASJ-159-G GH- 39	H- <i>39</i> -02
[X] Monit [] Domes [] Other:	-			Sampler:	. DALE	
Static Water Le One Casing Vol Start Purge (hrs) End Purge (hrs)	ameter: 0.5 in. aterial: PVC th (TD): 23 F7, vel (WL): 23 F8 tume(ga/0): 0.35 s): 0 2 f	\$.U. Coak 5.94		Turbidity DO NTU mg/L - (0 0.63 Low Flow Purge or Purge Data	Salinity ppt 0.00 Data Sheet	
Total Purge Tim		SAMP Preservative	LE COLLECTION INFORI Container Require		aboratory	Collected
VOCs	8021B	HCI	2-40ml vials	incites :	ENCO	Yes
SVOCs	8310	None	1-1Liter glass amber	rs .	ENCO	1
Pb	6010B	НИОЗ	1-250ml plastic		ENCO	V
	OBSERVATION				LABINFO	
1 Von =	0.35 liters	5 Vors = 1	.8 Lites	LAB:	ENCO	
se Thb	11HG TO 18.	S FT. BTDC.		COC #: LAB: COC #:		
Check if Collecte	ed:		Sic	nature(s):		
MS/MSD [DUPLICATE	/ ID No.: V0	<u> </u>	Myrin W.	Le	

LOW FLOW PURGE DATA SHEET

13500

PROJECT SITE NAME: **PROJECT NUMBER:**

NAS Jacksonville-Gas Hill

0255

WELL ID.: ___JAX-159-GH-__*0[* DATE: _____073099

Time	Water Level	Flow	рН	Cond.	Turb.	DO	Temp.	Cum. Vol.	and Comments
(Hrs.)	(Pl. below TOC)	(mL/Min.)	(S.U.)	(mS/cm)	(NTU)	(mg/L)	(Celsius)	(Liters)	
1116	6.93	400	5.84	.234	999	2,66			Start
1120	8.41	400	5.80	.234	-10	2.55	27.1	4000	
1130	8.35		5.89	.272	451	2.07	27.1	6000	cloudy 10 odor
1140 1145	8.47	200	5.85	.272	359	1.89	27.0	2000	
1160	9,10	Par	2	400	وجع				L '.'
1200	9.10	180	5.83	- 241	492	1.46	27.0	9800	Cloudy, no odor
1210	9.12	180	5.81	• 245	383	2.64	27.	11600	chady moder
1205	9.13	180	5.80	1242	268	0.79	26.9	13400	cloudy no odor
	7. 7. 7	180	3.81	1243	289	2.09	27.0	14300	cloudy, no oder
						<u> </u>			1.6
		<u> </u>							
					\				
					1				
			· .	W	1				
					MOS				
									
									
	·								
 									
		· ·							
-									

SIGNATURE(S): Eric Park

PAGE_1_OF_1_

Tetra Tech NUS, Inc.

LOW FLOW PURGE DATA SHEET

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-Gas Hill

0255

WELL ID.:

DATE:

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	start Clegh petro-liho a slowed flow fate. Clear Clear Clear Clear
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	deal petro-liho a slowed flow fate. clear clear
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	deal petro-liho a slowed flow fate. clear clear
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	clear
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	clear Clear
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	clear
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	clear
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	clear
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	clear
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	clear
$\frac{\sqrt{230}}{\sqrt{233}}$ $\frac{\sqrt{80}}{\sqrt{233}}$ $\frac{\sqrt{23}}{\sqrt{233}}$ $\frac{\sqrt{80}}{\sqrt{233}}$ $\frac{\sqrt{23}}{\sqrt{233}}$ $\frac{\sqrt{80}}{\sqrt{233}}$ $\frac{\sqrt{23}}{\sqrt{233}}$ $\frac{\sqrt{80}}{\sqrt{233}}$ $\frac{\sqrt{23}}{\sqrt{233}}$ $\frac{\sqrt{80}}{\sqrt{233}}$ $\frac{\sqrt{23}}{\sqrt{233}}$ $\frac{\sqrt{80}}{\sqrt{233}}$ $\frac{\sqrt{23}}{\sqrt{233}}$ \frac{\sqrt{23}}{\sqrt{23}}$ $\frac{\sqrt{23}}{\sqrt{23}}$ \frac	clegi
	clear.
	cleur
	•

/ VOL: 4.3L 3 vous : 12.9L

PAGE_1_OF_1_

LOW FLOW PURGE DATA SHEET

14700

PROJECT SITE NAME: **PROJECT NUMBER:**

NAS Jacksonville-Gas Hill

0255

WELL ID.:

JAX-159-GH-<u>3</u> 889299

DATE:

Time	Water Level	Flow	рН	Cond.	Turb.	DO	Temp.	Cum. Vol.	Comments
(Hrs.) 0905	(Pl. below TOC)			(mS/cm)	(NTU)		(Celsius)	(thers)	'mL
0910	8.10	500	6.25	.524	20	0.89	28.1	Ø	Start
0920	8.54	500	6.54	.518	8	1.33	27.8	2500	cheen
0930	8,94	200	6.63	.608		1.33	27.3	4500	clear
0940	8,94	200	6.49	. 634	0	1.24		6500	clea -
0950	8.96	200	6.50	.640	_1	0.84	a6.8	8500	closv
1000	8.16		6.51	.642	Ó		26.7	10500	Clean
1010	8.95		6.50	.645	0	1.03	26.8	12500	
1016	9.46	200	6.52	.646			26.8	14500	
		200	6.52	.643	0	417	26.4	15500	cloa~
						ļ <u>.</u>	 		
·						<u> </u>			
								ļ	<u> </u>
								<u> </u>	
						·		 	
								 -	
						 		 -	
				<u> </u>	:	 			
				AL.				 	
				144	12/				
		<u> </u>			Y				
	· · · · · · · · · · · · · · · · · · ·							<u> </u>	
								 	
		 							
				1 .				 	
						 			
					······································	<u> </u>	 		
								 	
:								 	
					,			<u> </u>	

Tetra Tech NUS, Inc.

LOW FLOW PURGE DATA SHEET

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-Gas Hill

0255

WELL ID.: ___JAX-159-GH-

DATE:

Time	Water Level	Flow	-11	0				Cum.	<i>5</i> 6
***************************************			рН	Cond.	Turb.	DO	Temp.		Comments
(Hrs.)	(Pl. below TOC)	(mL/Min.)	(S.U.)	(mS/cm)	(NTU)	(mg/L)	(Celsius)	Vol. (Lifers)	
1222	3.00	300	6.29	. 395	324	1.29	27.9		Start
1235	4.35	366	6.28	.395	301	0.98	27.7	3000	
1245	4.35	200	6.26	.393	288	1.50	27.4	5000	
1255	4.21	200	6.26	. 403	11.5	1.81	27.2	7000	
1305	4.20	200	6.26	.405	69	1.86	27.1	9000	
1315	4.15	200	6,24	-407	23	1.58	26.9	11000	
1325 1330	4-15	200	6.23	.406	7	1.22	26,8	1300	clear
1000	4.10	200	6.23	• 405	10	1.81	a6,8	1400	clear Emish
						<u> </u>			
							<u> </u>		
	——————————————————————————————————————				<u> </u>			-	
							<u> </u>		
								 	
		·			4/2	<u> </u>		 	
•	· · · · · · · · · · · · · · · · · · ·	<u> </u>			Maril				
		 -		-	mach	} -			
	811			-					
	Processing and the second seco	 		<u> </u>					
				 				<u> </u>	
		 						1	
		<u> </u>		 			 		
		<u> </u>	 		<u> </u>		 	 	
	· · ·							 	
	· · · · · · · · · · · · · · · · · · ·						<u> </u>		
								 	
	<u> </u>			I	1.10	. 1/		<u> </u>	12.87
IGNATUR	RE(S):				, 1001	2 7.C	31	ULS = /	73.8 L PAGE_1_OF_1_
	* * * * * * * * * * * * * * * * * * * *								1 XOL_1_OF_1_

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-Gas Hill

0255

WELL ID.: __JAX-159-GH-_5 DATE: &&\omega399

DATE:

Time (Hrs.)	Water Level (FI. below TOC)	Flow (mL/Min.)	pH (S.U.)	Cond.	Turb. (NTU)	DO (ma/l)	Temp. (Celsius)	Cum. Vol. (Liters)	Comments
0948	5.03	100	5.82	2.41	93	1.13	25.3		Start
095343	5.13	100)		~			1,3	ordin
0954	778	175		-				1.4	increase flow rate
0957	5.15	175	5.95	2.41	1.50	2.50	25.0	7.9	The same is the same
1001	5.15	175	5.90	2.41	86	2.13	24.9	2.4	
1003		222	/	-				-3.0	increase flow rate
(088	6.00	225	5.86	2.41	60	1.66	24.8	4.1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
10/0		180						4.5	Slowed pump
1015	6.25	188	5.99	2.42	36	2.53	25.0	5.4	cldy.
1035	6.50	180	5.93	2.42	a	2.27	25.2	7.2	cldy.
1045	6.77	180	5-81	2.42	9	0.51	25.2	9	
1042	6.95	180	5.81	2. 41	6	0.93	25.3	10.8	stable stope 1045
\vdash			·						/ /
									
				l	<u> </u>		ļ		
		<u>-</u>				 -	<u> </u>	·	
ļ ———					 				
		· · · · · · · · · · · · · · · · · · ·							
<u> </u>					Holo				
······	· <u>-</u> ·			<u> </u>	2				
					 				`
									
				 	l	, :			·····
						<u> </u>			
				 				L	
						1			
			•		<u> </u>				
	····								

SIGNATURE(S): Man J. Je

1 vol = 3,1L 3 vols = 9,3L

Tt	Tetra Tech NUS, Inc.
----	----------------------

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-Gas Hill

0255

WELL ID.: ___JAX-159-GH-_6

DATE:

Time	Water Level	Flow	рН	Cond.	Turb.	DO	Temp.	Cum.	
(Hrs.)	(PL below TOC)	(mL/Min.)	(S.U.)	(mS/cm)	(NTU)	(mg/L)	(Celsius)	Vol. (Liters)	Comments
1242	4.74	100	6.38	1.43	223	2.47	28.7	Φ	Chand
1254	5.30	100	6.35	141	24	1.45	27.4	1.2	Start
203	5.66	100	6.24	1.39	5	1.42	27.6	2.1	clear
1311	5.98	100	6.28	1.38	6	207	27.5	2.9	clark
1322	6,27	100	6.36	438	-5	2.41	27.5	4	clear
334	6.62	100	6.39	1.38	3	2.63	27.3	5.2	clear
1358	6.99	100	6.43	1.38	7	2.39	27.7	6.8	clear
400	7.28	100	6.46	1.38	7	2.43	27.6	7.8	dear
410	7.46	100	6.39	1.39	7	1.72	27.5	8.8	Lead
1423	7.75	100	6.41	1.39	9	1.63	27.3	10.1	Clear
1439	8.10	100	6.43	1.39	25	1.85	278	11.7	dear
1453	8-23	100	6.44	1.38	3	1.87	27.Q	/2.3	clerk
423	8.36	100	6.45	1.39	7	2.12	27.3	13.1	cleur
		<u> </u>		<u> </u>					stable stope 145
	$\overline{}$	<u> </u>							
		-							
				 		<u> </u>			
			<u> </u>	`-		<u> </u>			
	•	<u> </u>		<u> </u>		ļ	ļ	ļ	
				AL.	1 1	<u> </u>			
				146	MACLO	<u> </u>	<u> </u>		
			-		~		ļ	<u> </u>	
	· .	 		 					
			<u> </u>			 		ļ	
		···		 			 		
· .			 	<u> </u>					
		1		<u> </u>			<u> </u>		<u> </u>
		 \ 	<u> </u>	 	 			· · ·	
				.l	<u> </u>	<u> </u>	<u></u>	<u> </u>	
GNATUR	RE(S):	W. Ad	\mathcal{L}		. (VOL = 4.	3L 3°	10 LS=	12.9 L
>14/\10K						-	_		PAGE_1_OF_1_

Tt.	Tetra Tech NUS, Inc.
-----	----------------------

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-Gas Hill

0255

WELL ID.: ___JAX-159-GH-_

DATE:

-				i	····	r	r		200
Time	Water Level	Flow	pН	Cond.	Turb.	DO	Temp.	Cum.	
(Hrs.)	(Fl. below TOC)	2 mail /8 4: \	20.113					Vol. (Liters)	Comments
0920				(mS/cm)	(NTU)	(mg/L)			
0930	2.74	300	6.24	9 92	42	7.05	25.1	7	Start
0940	4,21 3,98		6.5 3	.772	8		25.5	2000	clear
0950		200	6.70	.781 .779	11	0.65	25.4	5 000	chear
1000	4.00		6.71	.775		0.90	35.1	7000	clear
1010	4.25	200	6.69		2		24,9	9000	clear
1020	9,41	200	6.70	. 773	8	0.89	25.0	11600	Clock
1026	4,40		6.71	.776	10	0.69	25,0	13000	clear
10 05	11-10	200	0.11	• 116	10	0.67	25,1	14000	Clear
		<u> </u>							
-	- · · · · · · · · · · · · · · · · · · ·					\			
						\			
					· · · · · · · · · · · · · · · · · · ·	\			
					· · ·				
						<u> </u>	, , , , , , , , , , , , , , , , , , , ,		
								<u></u> ×	
			-						
									
			-						
			<u> </u>						
	***			-					
	·					 			
		<u> </u>	-						
									
	, <u></u>								
	,		- -						
<u> </u>									j

SIGNATURE(S): Evic Parker

| VOL = 4.4 L 3 VOLS = 13.2 L

Tetra Tech NUS, Inc.

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-Gas Hill

0255

DATE:

WELL ID.: __JAX-159-GH-_8_ DATE: 080399

								16 5a	<u> </u>
Time	Water Level	Flow	рН	Cond.	Turb.	DO	Temp.	Cum. Vol.	Comments
(Hrs.)	(PL below TOC)	(mt/Min.)	(S.U.)	(mS/cm)	(NTU)	(mg/L)	(Celsius)	(Liters)	
1435	7.75	300	6.39	557	<u> እ</u> ኤባ	o. า า	<u>ڪم, ج</u>		
1445	9.80	300	6.47	.55 4	374	1.79	an. 1		Start
1455	8.25	200	6.49	.564	202	1.25		3000	
1505	9.75	200	6.49	.568			<u> </u>	5000	
1515	8.75	200	6.45	570	142	1.70	27.2	7000	
1525	8.75	2005	6.40	.567	27	1.12	26.9	9000	
1535	9,0	२००	6.39	.560		1.81	26.5	11000	
1545	9.00			-559	53 41	1.64	26.2	13000	
1555	9.10		6.40		31	7 60	26.0	1500	
			2.90	-558	0	2.89	a6.1	17000	
									
			-	· · · · · · · · · · · · · · · · · · ·					
									
			_						
			 	/	<u> </u>	<u> </u>			
				AA.	λ //				
	· · · · · · · · · · · · · · · · · · ·			7 700	AUG				
						<u> </u>			
	· · · · · · · · · · · · · · · · · · ·								
		·							
				·				-	
								· ·	
		2 /	L						

SIGNATURE(S): Ere Police

1 VOL= 5,8L 310LS= 16.5L

Tt	Tetra Tech NUS, Inc.
----	----------------------

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-Gas Hill

0255

WELL ID.: __JAX-159-GH-_9_ DATE: __080299

Time (Hrs.)	Water Level (Pf. below TOC)	Flow (mL/Min.)	рН (S.U.)	Cond. (m\$/cm)	Turb. (NTU)	DO (mg/L)	Temp. (Celsius)	Cum. Vol. (Liters)	Comments
0910	6.81	275	6.22	0.577	-18	1.53	26.5	X	Start
0920		275	6.40	0.568	- 1,Ø	1.57	25.8	1.4	clear
8932	7.33	250	6.45	0.569	- 10	1.79	25.4	4.2	@ 0920 -5/oved pums/1/0
Ø939		250	6.46	0.570	-10	1.37	25.6	7.2	clear I'
0945		250	6.36	0.577	-/0	1.96	25.6	10.4	Clear
8950	7.37	250	6.48	0.567	-10 -10	1.96	25.1	11.9	clear
1000		250	6.37	0.570		1.82	25.4	/3.2	deak
			<u> </u>	W. 374	-, 10	1.02	23.9	14.5	clear stable stope 0955
									Stable stope 0955
		<u> </u>							
					<u> </u>				
								 	
						 			
					(
					4	1			
					UNIX	//			
					4//2/	Ke			
		1							

SIGNATURE(S): _

Marin d. I de

VOL= 4.6L 3/11=13.8L

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-Gas Hill

0255

WELL ID.:

DATE:

__JAX-159-GH-_10 _____& RAZ99

	Time	Water Level	Flow	рH	Cond.	Turb.	DO	Temp.	Cum. Vol.	Comments
	(Hrs.)	(Pf. below TOC)	(mL/Min.)	(S.U.)	(mS/cm)	(NTU)	(mg/L)	(Celsius)	(Liters)	Comments
1	1626	7.34	N 295							Start
	1631	7.80	225	6.26	0.759	9	2.57	27.2	1:1	clear
	1627	8.57 9.20	200	6.27	n 100	10	9 3/	<u> </u>	2.4	Slowed Dunge rate
	16.57	9.92	200	6.27	8.698 8.787	-10	2.06	26.7	3.4 M	· clear
	1707	(0.57	200	6.33	D.737	-10	2.21	26.3	₹4 7,4 1.4 5.4	Clear Clear
	1717				W-121		2.21		1.16.4	Cear
ļ	1727								3:17.4	
ΛĐ	737								8.4	
0	1747								9.4	
hy 10	1757								10.4	
4	1817								44.4	·
•	0 7						. ,,,,,		124	
	1715	11.02	200	6.19	Ø. 777	-10	2.22	25.8	11	clear
	1720	11.36	280	6.24	Q.778	-10	2.23	25.5	12	clock
	1725	11.67	200	6.20	0.795	-10	2.27	25.5	13	clear
						 				stable, stope 1725
		Wall	weed dr	20 100	100 1	amoln	VOA'S	. Decide	d +0	
		6.10	Bulli ate	ا ما امل	tion to	ERIC	moh		Ø 7¢	
		7.0			1			, , ,		
						<u> </u>				
					ļ <u>.</u>					
			·	—		<u> </u>				
			 							
	<u> </u>	\sim \sim \sim \sim			<u> </u>		<u> </u>			

SIGNATURE(S): Menon Vi 2 de

/ VOL = 4.3L 3 VOLS= 12.9L

93008

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-Gas Hill

0255

WELL ID.: ___JAX-159-GH-__(2 DATE: ____073099

Time (Hrs.)	Water Level (Pf. below TOC)	Flow (mL/Min.)	pH (S.U.)	Cond. (m\$/cm)	Turb. (NTU)	DO (mg/l)	Temp. (Celsius)	Cum. Vol. (Liters)	Comments
1625	4.10	350	6,84	.498	27/	1.52	25.6		Start
1635	4.25	3∞	6.90	.504	89	1.49	24.8	3000	Clear
1640	4.22	300	6.82	50\$	28	1.20	24.5	4500	Claar
1645	4.25	300	6.84	495	20	1.96	24.5	6000	Clear
1655	4.25	300	6.83	.495	13	1,70	24.4	7500	Clear
1700	4,26		6.83	.493	9	1,93	24.5	9000	Clear
1705	4.26	300	6.83	.494	10	1.98	24.5	10500	Clear
ļ									
		<u> </u>							
		ļ				,			
 									
<u> </u>									
								 	
		 							
		 -							
	L	 		<u> </u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
		 			March .	<i> </i>		<u> </u>	
					000	168.		·	
						9			
	 	 			ļ ————	 			
						 	 		
							 	$\overline{}$	
		 							
						 			

SIGNATURE(S): Eve Patr

Tetra Tech NUS, Inc.

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-Gas Hill

0255

WELL ID.: ___JAX-159-GH-_<u>/3</u>_

DATE:

8/2/85

							16800		
Time (Hrs.)	Water Level (Pt. below TOC)	Flow (mL/Min.)	pH (S.U.)	Cond. (m\$/cm)	Turb. (NTU)	DO (mg/L)	Temp. (Celsius)	Cum. Vol. (Liters)	Comments
1425	6,75	300	6.30	.610	353				
1435	8.31	300	6.31	-582	181	0.89		Ø	Start
1445	8.40	200	6.30	.582	88	1.75	26.6	3000	Cloudy
1455	8.45	200	6.30	.585	68		26.3	50000	
1505	8.45	200	6.29	.588	53	1.38	26,2	7000	
1515	8,45	200	6.28	.591	49	1.43	25.9	8000	
1525	8,49	200	6.27	.593	47	1.46	26.0	11000	
1535	8.46	200	6.29	.594		1.50	25.9	13000	
1548	8.49	700	6.30	.595	47	1.36	28.8		clear
	0.1	- 200	0.30	-095	31	1.48	25.8	17000	clean
						 			
						<u> </u>			
					<u> </u>	<u> </u>	ļ		
			\rightarrow		(
					-\				
				A #					
 				1.1	A				
					170				
An .									
	· · · · · · · · · · · · · · · · · · ·								
		2							,

SIGNATURE(S): Ere Pole

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-Gas Hill

0255

DATE:

WELL ID.: ___JAX-159-GH-__/4
DATE: ____073099

Time	Water Level	Flow	pН	Cond.	Turb.	DO	Temp.	Cum. Vol.	Comments	
(Hrs.)	(Pf. below TOC)	(mL/Min.)	(S.U.)	(mS/cm)	(NTU)	(mg/L)	(Celsius)	(Liters)		
0855	6.16	300		_					Start	
0859		275	6.10	0.332	5	1.60	27.2	1.2L	slowed rate to	226
0904	7.01							2-66	slowed rate	7.5
0909	7.5	225	5.99	0.327	a	1.69	26,	3.7		
0914	7.17		-							
0920	7.3/		5.85	0.327	10	1.64	25.7			
0922	7.0/	225				-		6.14		
0928	7./3	200	5.72	0 226	_	/ 0.5	127	=	slowed rate	
0933	7.11	200	5.76	0.325	2	1.20	25.6	7.7/		
11947		200	5.74	0.321	2	1.63	25.7	8.7L	clear	
0950	7.10	200	717			1,22	26.1	11.5	Clear	
0958	~	200	5.79	0.315	9	0.96	26.1	13.7	clook	
1007	7.10	200	5.98	0.3/3	//	#1.33	26.2	15.5	clear	
1018	7.10	200	6.01	0.310	10	1.18	26.9	17.3	clear	
1021	7.10	٥٥٥	6.08	0.309	6	1.43	26.4	17.9	51 Able, Stop	
									1	
	-					<u> </u>				
					Wale .		ļ	ļ		
ļ					206					
ļ		ļ			 					
			<u> </u>							
		<u> </u>				<u> </u>	 			
		-								
 			<u> </u>							
		\			· · · · · · · · · · · · · · · · · · ·			 		

Iva=5.3L 3VOL= 15.9 L

T-	Tetra Tech NUS, Inc.
----	----------------------

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-Gas Hill

0255

WELL ID.: __JAX-159-GH-_/5
DATE: __673099

Time	Water Level	Flow	рН	Cond.	Turb.	DO	Temp.	Cum.	
(Hrs.)	(Pf. below TOC)	(mL/Min.)	,	(mS/cm)	(NTU)		(Celsius)	Vol. (Liters)	Comments
1340	<u>~</u> 3.98	700	5.76	. 200	421	0.78	27.0	© Callels)	Start Clear
1350	6.31	200	5.68	.192	98	1.56	26,9	ADDO	
1400	6,43	200	5,70	.192	88	1.72	26.1	4000	clea-
1410	6.58	200	565	.190	48	0.78	25.9	6000	clear
1420	6,61	200	5.62	192	à	0.70	25.8	8000	clear
1430	6.60	200	5.55	195	3	0.78	25.5	10000	Clear
1440	6.68	200	5.52	190	4	1.04	25,4	12000	Clear
1450	6.65	Z00	5.54	.189	4	1.48	25. 5	14000	Clear
1500	6.68	200	5,53	.189	6	0.93	25.5	16000	
									
ļ									
									
 						<u> </u>			
									
<u> </u>					1				
				\mathcal{H}_{λ}	X /				
				T'W	X				
	— " <u> </u>					<u> </u>			
-				<u> </u>					
				·					
J									
									
									1

SIGNATURE(S): Ene Pole

16800

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-Gas Hill

0255

WELL ID.: __JAX-159-GH-_/6
DATE: __\$/2/55

Time	Water Level (Fl., below TOC)	Flow	pH /s.ii.v	Cond. (m\$/cm)	Turb. (NTU)	DO (mg/l)	Temp. (Celsius)	Cum. Vol.	= M C Comments
(Hrs.)	5.78	300	6.39	. 771	3		26,5	8	Start cca-
1045	6.38	300	6.31	782	6	0.92	26.2	3060	Clear
1605	6,28	200	6.29	.784	4	1.02	25,7	8000	
111.05	6.35	200	6.29	.778	0	149	25.7	700	clear
111-5	6.38	200	6,27	1116	.5	1.38	25.6	900	clear
1125	6.88	200	6.26	1775	1	1.44	25.5	11000	
11.35	6+41	200	6,26	. 225	2		28.4	13000	
WE	6.43	250	6.26	.775	Z		25.4		clean
1155	6.43	200	6.26	-222	0	1,19	25.4	1700	clear
\ <u>\</u>	<u> </u>								
		·.,							
								ļ	
						<u> </u>		<u> </u>	
		1				<u> </u>			
								ļ.—	
								_	
					,			<u> </u>	
					<u> </u>			ļ	
				THA	4 /			_	
					ALLO		 	-	
								- 	
						 	\	-	
							+-		
							 		
· ·					_				
								+	
			-		_		 		
									+

SIGNATURE(S): Enie Pake

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-Gas Hill

0255

									18300
Time	Water Level	Flow	рН	Cond.	Turb.	DO	Temp.	Cum.	
(Hrs.)	(Pl. below TOC)	/	#8-11-A		an essential			Vol.	Comments
		(mL/Min.)		(mS/cm)			(Celsius)		$m \subset$
1615	6.79	300	6.82	.595	181		28.0	2	Start Claudy
1625	7.84	300	6.98	.586	12	1.66	27.8	3000	c hear
1635	7.81	200	6.96	581	4	1.92	28,0	5000	Clear
1645	7.00	200	6.94	1580	3	1.72	27.9	7000	clear
1655	7.34	206	7.00	.575	0	1.95	27.8	9000	clear
1705	7.41	200	6.99	.574	-a	1.90	27.6	11000	clear
1715	7.38	200	7.00	572		1.68	27.6	13000	
1725	7.38	200	7.01	•5 70	0	1.88	27.4	15000	clear
1730	7.38	200	6,99	570	0	1,53	27.5	16000	
									
·····									
									
		<u> </u>							
		 `							
					1.				
					K4.1\ 1				
					1/JKW//				
					LEG				
				,					
							`		
]							
						i			
								A	

SIGNATURE(S): Evi Pah

Tetra Tech NUS, Inc.

LOW FLOW PURGE DATA SHEET

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-Gas Hill

0255

	mments
1451 3.77 225 — — — 3.6 Stored 1453 3.76 225 5.55 0.300 - 4 1.33 26.7 4 tryellos 1500 3.73 225 5.52 N.290 - 10 1.39 26.7 5.6 84me 1511 3.73 225 5.49 0.297 - 10 0.51 26.7 8.1 Same 1520 3.74 225 5.67 0.297 - 10 1.46 26.7 10.1 Same 1530 3.74 225 5.68 0.298 - 10 1.77 26.7 12.3 same 1537 3.74 225 5.66 0.297 - 10 1.24 26.3 13.8 same 1537 3.74 225 5.66 0.297 - 10 1.24 26.3 13.8 same	
1500 3.73 225 5.52 N.290 -10 1.39 26.7 5.6 grap 1511 3.73 225 5.49 N.297 -10 0.51 26.7 8.1 Same 1520 3.74 225 5.67 0.297 -10 1.46 26.7 10.1 Same 1530 3.74 225 5.68 N.298 -10 1.17 26.7 12.3 SAME 1531 3.74 225 5.66 0.297 -10 1.24 26.3 13.8 SAME	20.00.0140
	Buyo rate
1520 3.74 225 5.67 8,297 -10 1.46 26.7 10.1 SAME 1530 3.74 225 5.68 0.298 -10 1.17 26.7 12.3 SAME 1537 3.74 225 5.66 0.297 -10 1.24 26.3 13.8 SAME	
1530 3.74 225 5.68 D.298 -10 1.17 26.7 12.3 same 1537 3.74 225 5.66 D.297 -10 1.24 26.3 13.8 same	
153+ 3,74 225 5.66 D.297 -10 1.24 26.3 13.8 SAME	
	
Tuk A	

Mewin W. Dde

1 Vn = 466 3 Vors = 13.86

PROJECT SITE NAME:

NAS Jacksonville-Gas Hill

PROJECT NUMBER: 0255

WELL ID.: ___JAX-159-GH-_<u>ΔΦ</u>
DATE: ___*Δ*8ω399

Time (Hrs.)	Water Level (Pl. below TOC)	Flow (mL/Min.)	pH (S.U.)	Cond. (m\$/cm)	Turb. (NTU)	DO (mg/L)	Temp.	Cum. Vol. (Liters)	Comments
1527	2.9/	250	6.11	0,437		3.02	25.5	۵þ	Start
1533	3.23	250						1,3	cloak
7534	3.27	150	6.12	0.430	0	2.77	24.4	1.8	clear
1539	3.29	920	6.03	10.426	~ /	243	25.00	3.1	clear
1545	3.38	250	5,96	8.429	<u> </u>	2.55	24.0	4.6	clear
1550	3.30	25Q	5.96	P.430	_ ~ /	2.93	24.0	6.1	Clear
1,555	3.34	250	5.99	Ø. 434		2.38	24.1	7.6	clear
1600	3.38	250	6.06	0.437	-2	2.35	23.9	9.1	cleup
1602	3,38	250	6.01	D. 437	-/	2.00	24.0	9.6	clear
<u> </u>	\								stable, stone 1602
									7577 - 755 2
 									
					1				
				My	1				
				100			<u> </u>		
					VQ.				
						 		 	
	 					<u> </u>			
	 			· · · · · · · · · · · · · · · · · · ·					
	·			<u> </u>			··		
		(

SIGNATURE(S): _

1 VOL = 3.1 L 3 VBUS = 9.3L

Tetra Tech	NUS, Inc.
------------	-----------

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-Gas Hill

0255

WELL ID.: ___JAX-159-GH-_<u>21</u> DATE: 073099

Time (Hrs.)	Water Level (Pl. below TOC)	Flow (mL/Min.)	рН (S.U.)	Cond. (m\$/cm)	Turb. (NTU)	DO (mg/l)	Temp. (Celsius)	Cum. Vol. (Liters)	Comments
1056	6:60							3	Start
7056	7,10	/80	6.80	0.780	20€	1.59	27.7	0.9	
1103	7.68	180	6.98	0.775	123	1.38	20.0	2.2	clear
1//3	7.75	180	6.81	0.771	68	1.35	26.1	4	dear
1/25	7.75	180	6.91	0.773	67	1.50	25.7	6.1	
//31	7.75	180	6.89	0.773	51	1.42	25.6	7.2	clean
1145	7.75	180	6.85	0.776	25	1.11	25.9	9.7	clear State, stop
\vdash				<u> </u>			<u></u>		/ /
 						<u> </u>			
								[· · · · · · · · · · · · · · · · · · ·	
				\				 	
ļ ———				(A)	7/			<u> </u>	
				Mu				 	
					<u> </u>				
	<u> </u>						<u> </u>	 	
				-					
				1					
					· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·								
· · · · · · · · · · · · · · · · · · ·								/	
		.\ //							

SIGNATURE(S): Mewn Wade

(Vol=3.1 L

3 VOL = 9,3L

Tt	Tetra Tech NUS, Inc.
----	----------------------

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-Gas Hill

0255

DATE:

Cum. Time **Water Level** Flow На Cond. Turb. DO Temp. Vol. Comments (Pf. below TOC) (Hrs.) (mL/Min.) (S.U.) (mS/cm) (NTU) (ma/L) (Celsius) (Liters) 1244 DOOMS X Start 7.72 200 cloak 0.4 1354 200 8.00 -235MB 200 02 25.9 200 X.3 S 40 1.50 200 8.51 25.8 clear 200 rloar 1447 200 200 25.6 13.6 c loan 502 18020000 0.622 1.24 1 COOK 8.82 200 6.22 P.633 25.0 Cloar 8.84 200 6.23 25.3 Clear 1532 8.84 280 10 6.23 clear 1.08 25,3 1535 8,84 200 0.89 25.8 clock STURE, stope 1535

SIGNATURE(S):

1 vol= 7.4

3VOL = 22.2

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-OUT GAS HILL 9018 0255

WELL ID.: <u>A TAX-159-6A-23</u>

DATE: <u>07/29/99</u>

9300

					·				
Time	Water Level	Flow	рН	Cond.	Turb.	DO	Temp.	ORP	Volume
(Hrs.)	(Fl. below TOC)	fool (Min S	(S.U.)	(mS/cm)	(NTU)	ace en	•		-Comments_
1688	5,29	400					(Celsius)	(mV)	ml
1700	5,99	400	6.21		-10	0.76	26.0		Ø
1705	5.61	200	6.22	. 464		0.84	25.9		2000
1715	5.45	200	6.20	. 475	-10	1.43	28.4		3000
1720	8.45	200	6.19	. 475	-10 -10	1.01	24.5		5000
1725	5.45	200	6.18	• 476	-10	1.15	24.7		6000
1730	5.45	200	6.17	. 475		0.96	24.7		7000
1735	5.44		6.16	. 474	-10	0.70	24.7		8000
1740	5.45	200	6.17	• 474 • 474	-10	1.68	24.7		9000
4			6.11	• 77.5	-10	1.45	24.7		10 000
								ļ	
					<u> </u>		<u> </u>		
				[[
					1.				
				<i> </i>					
					1				
			<u> </u>	<u> </u>	<u> </u>				
					 	 			
						ļ	 		····
		-				ļ			
					<u> </u>				
					ļ	ļ		<u> </u>	
									
	<u>.</u>								
_									

SIGNATURE(S): Eri Pack

PAGE OF L

Tetra Tech NUS, Inc	٥.
---------------------	----

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-Gas Hill

0255

WELL ID.: ___JAX-159-GH

DATE:

Time (Hrs.)	Water Level (Pf. below TOC)	Flow	pH (S.U.)	Cond. (m\$/em)	Turb. (NTU)	DO	Temp.	Cum. Vol. (Liters),	AML, Comments
3 50	5.65	600	6.06	.479	11	0.76			
8 55	7.30	600	6.08	.476	9	N. 76	26.9	0	Start
1805	6.16	200	6.08	. 4601	6	0.89	25.7	3000	
1915	6,20	200	6.00	.460	37	0.53		5000	clear
18 25	6,25	200	5.88	,460	28	0.96	25.6	7000	no odor, clear
te35	6.20	200	5,75	.457	27	1.28	25. 3	9000	clea-
1845	6.22	200	5.79	.456	15	0.72	25. 4	11000	Clear
1055	6.23	200	5.80	.456	16	1.66	25.5	1300	Clea-
1005	6.23	Zas	5.79	.456	15	1.29	25.5 25.5	17.00	1/29-
			3_4_/ /	1-736	13	1. 29	2002	1100	Clea-
							 	 	
			· · · · · · · · · · · · · · · · · · ·	·					
								<u> </u>	
								 -	
								 	
								 	
7-1				A.	1		† 	<u> </u>	
		1		700	$\lambda / / $	ļ			
					ASC				
						 			
	_					<u> </u>		 	

SIGNATURE(S): 💯	, Pake	
· · · · · · · · · · · · · · · · · · ·		

Tetra Tech NUS, Inc.

LOW FLOW PURGE DATA SHEET

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-OUT GAS HILL -0018-0255

DATE:

Time	Water Level	Flow	рН	Cond.	Turb.	DO	Temp.	ORP	Comments	Cu.
(His.)	(FL below IOC)	(mL/Min.)	(S.U.)	(mS/cm)	(NTU)	(mg/L)	(Celsius)	(mV)		Vol
1704	2,40				-		/		Start	7-
1711	4,53	250	6.81	0.644	-10	1.72	25.8			11.8
1713	200-MD 4.73 ×	200		A / 68					Slow down pump	23
1726	4.73 ×		6.76	0.638	-10	1.39	25.0		1 7	2.3 3.7 4.9
1732	6.12	200	6.76	0.637	-/0	1.39	24.9			4.9
1736	0.72	200	6.69	0.638	-10	1.17	24.2			6.1
1739	6.24		0.01	0.00			2T.2	-		6.9
1742		200	6.61	0.640	-10	1.16	24.1			8.11
1745	6.31									8.7
1749		200	6.49	0.637	-10	1.51	24.3			9.5
1755		200	6.48	0.649	-10	1.50	24.1			10.
1800		200	6.51	0.650	-10	1.65	24.1		Stable/stop	11.
									/ //	
				<u> </u>						
	-,	 								4
					<u>:</u>					-
				(<u> </u>					4
				Hud						┨
			 	Jeve F	4			 		-
				 		 	 	 		-
							 	 		1
										1
					<u> </u>					7
										7
	* USE M	in imm fli	w rute o	200 ml	min des	one do	opin de	ter les	nel or weld	7
	NW	er set +	his done	l l		7]

3.1 × 3 = 9.3L

PAGE_OF__

Tetra Tech NUS, I	nc.
-------------------	-----

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-OUT GAS HILL
O018-0255

WELL ID.:

JAX-159-6H-26

DATE:

Time	Water Level	Flow	рН	Cond.	Turb.	DO	Temp.	ORP (mV)	Comments	Cun. vol
(Hrs.)	(Ft. below TOC)	(mL/Min.)	(S.U.)	(mS/cm)	(NTU) -/0	(mg/L)	(Celsius)		start Lt. orange	,
1519	2,55 2.53	~ 450	6.20	0.637	-10	1.16	26.8		1204	2.26
1532	3.00	v 360	6.25	0.645	-10	1.11	26.9	_	slowed own down	4.91
1538	2.96	~360	6.24	0.643	-10	1.08	26.7		Lt. yellon	4.9L 1.1L 9.6L
1545	2.96	~360	6.25	0,645	-10	7.45	26.6		\	7.6L
15.46	2,96	350		0.44	10	7 40	3/0	-	slow it down	9,9L 12.1L
1552	2.94	350	6.21	0.643	-10	1.40	26.8		5/ow it down	13.5L
1556	2.94 2.89	300	6.18	0.643	-10	1.34	26.8		Lt. yellow	
1613	2.89	300	217	0.629		1,45			Stop/stable	1866
100	8707	1	7.77	1					77]
										1
							↓	ļ		4
					ļ	 	-			-
					<u> </u>	 	 			1
		 	-	+	 		+	 		1
			 	+	THE C	 	 	 		1
		- 			the					
				-		W.				4
								_		4
					_		1	_		-{
							 	\		┪
			<u> </u>					 \		1
			 		-			 - `		1
							-	 		7
	ļ <u></u>		+]
		-	- 			<u> </u>				
				1						L
SIGNATI	URE(S):	m W. S	de		1 Cuoniz	V2 = 5.	Pl= I	7.1 L	PAGEOF	_

Tt.	Tetra Tech NUS, Inc.
-----	----------------------

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-OUT GAS HILL

-0018- 0255

WELL ID.:

JAX-189-GH-27

DATE:

07/29/99

Time	Water Level	Flow	рН	Cond.	Turb.	DO	Temp.	ORP	Volume -Commonis
(Hrs.)		(mL/Min.)	(S.U.)	(mS/cm)	(NTU)	(mg/L)	·	(mV)	Commonis m L
1515	2.58	400	6.54	.583	-10	1.90	25.1		Ø
1520	3.24	LDO	6.54		-10	1.54	24.8	-	2000
15 25	4.0+10	200	6.46	.633	-10	2,50	25.0		3000
1530	4.0330	200	6.46	.638	-10	1.80	24.8	_	4000
1835	4.30	200	6.44	.640	-10	1.56	24.6	-	5000
1590	4,31	200	6.38	.644	-10	1.50	24.5		6000
1545	41,31	200	6.40	.645	-10	1.76	24.5	_	7000
1550	4,30	200	6.39	.646	-10	2,03	24.5		8000
1868	4.31	200	6,39	,647	-10	1.65	24.4	_	9000
1600	4.30	200	6.39	.647	-10	1.56	24.5		10000
ļ				ļ					
				h/\	<u>n</u>				
				LAYAY					
			<u> </u>	- VA					
	- <u></u> .								
<u> </u>									
						_			
							<u> </u>		
		<u> </u>	l	<u> </u>			L		

9300

SIGNATURE(S): Evi Park

PAGE__OF___

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-OU1 GA3 H/LL

-0018 0155

WELL ID.:

JAX-159-GH-28

DATE: 67/29/99

Time (Hrs.)	Water Level (Ft. below TOC)	Flow (mL/Min.)	рН (\$.U.)	Cond. (mS/cm)	Turb. (NTU)	DO (mg/L)	Temp. (Celsius)	ORP (mV)	Comments
1016	D.60		6.62	0.539	~10	<i>2.5</i> 3	25.4		start
								· ·	slowing flow rate
									toest! water level.
1026		-							@ 1023 @ 200 m2 min
1032	FI			4		(=)			cum. vol= 3.82
1043	5.1 4.93	200	6.80	0.527	- 10	1.71	26.3		cum. Vol = 5L
1052	4,92	200	6.76	0.529	-10	1.81	26.3		CUM. NOL= ZZL
1103	4.92	200	6.80	0.523	-10	2.30	25.9		CUM. VOLZ 9L
1103	4.72	200	$\varphi \cdot \iota \tau$	10,51	-10	1.96	25.8		cum. vol = 11.2L
					!		<u>. </u>		stope, 1103
						 	<u> </u>		
				<u> </u>				 	
						İ			
									
						(
					1	W) o			
					IV	New			
						A.			
								<u> </u>	
			· · · · · · · · · · · · · · · · · · ·						
	<u> </u>					 	,	ļ	
	M	1 1			L	<u></u>	9.3 Lik	<u> </u>	

SIGNATURE(S): Mun W. Sale

3 Vous = 9,3 liters

PAGE_OF_

SIGNATURE(S): Mount w & le

LOW FLOW PURGE DATA SHEET

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-OUT GAS HILL

-0018 0255

WELL ID.:

JAX-159-6H-29 07/29/99

PAGE_OF_

DATE:

Time	Water Level	Flow	pН	Cond.	Turb.	DO	Temp.	ORP	Comments	Cam
(Hrs.) 1322	(Ft. below TOC)	(mL/Min.) ~325	(S.U.) 6.48	(ms/cm)	(NTU)	(mg/L)		(mV)		
1332	MA 3.123.07	~ 400	10.60	11270	-10	1.41	27,1	\	Start	
1338	3.07	~400	6.63	0.544	-/0	0.77	2/ 1/		change flow rate	3.6 5.6 8.8
1346	2 11	~450	6.44	0.506	-10	0.56	26.4		clarge flow rate	ي ۾ ا
1355	3.11	2450	646	0.480	-10	1.52	25.6	_	0-1	18.8
1406	3.13	2450	6.22	0.452	-10	100	25.9	\	cloar	1/2/
1415	3.13	2450	6.13	0.425	700	1.07	25.7	\	Clear	17.7 21.7 24
1420	3./3	N 450	6.10	0.431	410	0.86	25.5	 \	dear	$-\frac{\alpha}{\alpha}$
1425	3.13	~450	6.03	0,413	272	1.29			clear	ارگرا ا
, , <u>u</u>		,,,,,	.0.00	07.1.63	<u> </u>	7.47	٠.٠	_		26.2
									stope 1425	-
						 		 	,	⊣
	-		-	 		 				
	 			 						
				 	 	 				┨
		-	-			ì	 	 		_
			 		 	 	 -			-
				 	100	1/	-			_
				 	ALL	do	 	 		
	<u></u>		 		 >	 L	 			-
	<u> </u>					 \	 			-
	<u> </u>		 			 				
		ļ				 	 \		·	
			ļ <u> </u>	 		 		-		
	ļ		<u> </u>	 		 	 	\vdash		-
				 		 		 		_
						 		\vdash		
	<u> </u>					 				
				ļ		 				
		Wale			= 18.62	<u> </u>				_

	Æ	Tetra Tech NUS, Inc.
- 1	- 0	

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-OUI GAS HILL

0018 0255

WELL ID.:

JAX-159-6H-20

DATE:

07/29/99

20400

····									
Time	Water Level	Flow	pН	Cond.	Turb.	DO	Temp.	ORP	Volum e Comments
(Hrs.)	(Ft. below TOC)	(mL/Min.)	(S.U.)	(mS/cm)	(NTU)	(mg/L)	(Celsius)	(mV)	mL
1315	2.50	250	6,25	457	-10	3.68	27,7		0
13 25	2.69	250	6.19	. 446	-10	3.59	27.0		2500
1335	2.70	300	6.14	.444	-10	2,62	26.9		5500
345	2,71	350	6.12	.441	-10	2,65	26.5		8506 9000
355	2.72	400	6.09	.440	710	3,15	26.4		13000
1405	2.72	400	6.00	.439	-10	2.77	a6.6		17000
1415	2.72	400	6.02	.439	-10	2.69			81000
420	2.72	400	6.01	.440	-10	2.72	26,4	<u> </u>	23000
		-							
				 		 	<u> </u>		
			•	 					
		 	_						
				ļ			<u> </u>		
					 			ļ	
					 		<u> </u>		
		 	<u> </u>	 	K// (1	 	 	
					1200	 		 	· · · · · · · · · · · · · · · · · · ·
	 .,				1000	KV -			
		<u> </u>			 	1	<u> </u>		
	<u> </u>				1	 		 	
	<u></u>		-			 		 	
	l ,				 	 			
		-	 	<u> </u>	 	 	 		
	<u> </u>	 		 		 		\vdash	
"		-						 	
-					 	-			
		<u> </u>				•			
			 			-	<u> </u>		
		I _.	<u> </u>	<u> </u>		L	<u> </u>		

SIGNATURE(S): Eric Pake

PAGE_OF_/

Tetra Tech NUS, Inc.

PROJECT SITE NAME: **PROJECT NUMBER:**

NAS Jacksonville-OUT GAS HILL 17700 mL WELL ID.:

-0018 025S

DATE:

TAX-159-64-21

4.6541

'.:	JUN	_//_	3/6	<i></i>
	0	7/10	100	
	\mathcal{O}	1 N7	77	_
		7 7		

Time (Hrs.)	Water Level	Flow	рН	Cond.	Turb.	DO	Temp.	ORP	Volume me
	(Ft. below TOC)	(mL/Min.)	(S.U.)	(mS/em)	(NTU)		(Celsius)	(mV)	
1015	2.84	250	6.53	,428	392	3.28	ລາ. າ		0
10 25	3.18	250	6.51	.436	422	2.83	98. 1		2500
1035	3.12	200	6.58	.427	- 10	3.03			4800
1045	3.11	225	6.46	.435	-10	2,63	27.8	***	6780
1055	3, 12	225	6.45	432	-10	2.91	27,6	-	9000
1105	3,12	225	6,44	429	-10	3,21	27.6	_	11280
1115	3.12	225	6,45	. 432	- 10	3.36	27.6	-	13500
1125	3.12	225	6.46	. 435	-10	2,86	27.6	_	15750
1135	3.12	225	6.46	.435	-10	3.14	a7.6	 	18000
									1,088
								-	
				 -					
					<u> </u>				
<u> </u>				 		-	<u> </u>	 	
		 		 				 	
	<u> </u>	 -				 		 	
		 						 	
							<u> </u>	<u> </u>	
					+		ļ	ļ	
·				<u> </u>	And	//		ļ	
		ļ		ļ	"In	1		ļ	
						<u> </u>		<u> </u>	
								 	
		1						T	
<u> </u>		<u> </u>					1		
 				-					
	l	I	i	<u> </u>	<u></u>	<u> </u>		<u></u>	

SIGNATURE(S): En Pals

PAGE_OF__

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-GAS HILL

N0255.FB0.050.230

WELL ID.: NASJ-159-GH-32 -02

DATE:

9/2/1999

Time (Hrs.)	Water Level (Fl. below TOC)	Flow (mL/Min.)	pH (\$.U.)	Cond. (mS/cm)	Turb. (NTU)	DO (mg/L)	Temp.	كاعالوم	Comments
1725	1.82	350	6.33	.387	999	0.65	26.4	Ø	Start
1806	1.83	350	6.31	.375	250	0.35	26.0	2.14	Start to End
1004		 							
:						 			
				<u> </u>		 	 		
							 		
					W. I	,	<u> </u>	ļ	· · · · · · · · · · · · · · · · · · ·
					Mury	1		<u> </u>	
					- 10			 	
						The state of the s			

			·						
	· · · · · · · · · · · · · · · · · · ·					<u> </u>	· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·						
				-					
	→ C	ondn't t	ake w.c.	AT SAN	e time a	S march	1 /re to	unotre	cted space
							1		

SIGNATURE(S): Evi Kel

Tetra Tech NUS, Inc	٥.
---------------------	----

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-GAS HILL

N0255.FB0.050.230

WELL ID.: NASJ-159-GH- *33* -02 DATE:

Time (Hrs.)	Water Level (FI. below TOC)		pH (S.U.)	Cond. (mS/cm)	Turb. (NTU)	DO (mg/L)	Temp. (Celsius)	Volume	Comments
1605	2.50 2.55	200	5.76	.264	999	1,48	27.9	Ø	Start
1614	2.65	200	5.46	.244	661	1.22	27.8	1.8	Ene
					<u> </u>				
					<u> </u>				
				 					
				 					
		· · ·		 			<u> </u>		
3							<u> </u>		
								 -	
				 					
_			· · · · · · · · · · · · · · · · · · ·						
	0								

SIGNATURE(S): Eric Pale

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-GAS HILL

N0255.FB0.050.230

WELL ID.: NASJ-159-GH-34 -02 DATE:

ne i rs.)	Water Level (Ft. below TOC)	Flow (mL/Min.)	pH (\$.U.)	Cond. (m\$/cm)	Turb. (NTU)	DO (mg/L)	Temp. (Celsius)	CUM. VOL.	Comments
20	3.20							87	start
22	*	slowed pu	sprate -					72	taking air-still slu
25 37	*		15.99	8.324	999	2.21 3.99	28.5		
50		5° 180	6.18	0,325	645	3.99	28.0	D.85/	6 LMD Stop
		100							restant w/tabing
						 		 	sot to // feat 5 to
									note: stelling flow
			= 6 /						entrained.
789	X	N 50	5-84	0.318	999	3.97	27.0		sucking gir!
<u>ντ</u>	<i>T</i>	r 50						2.55	" / "
							<u> </u>		
			1.5					 	
	*				1				
		<u>. </u>		H	<i>(</i> } 				
			<u> </u>	7740	2 CAR	ļ			
								<u></u>	
		· · · · · · · · · · · · · · · · · · ·						-	
	· · ·					ļ <u>.</u>	* coust	ricks d	L. diameter at = 10
					<u> </u>		אונטיסט א	los	nothing much in hit
ATUR	E(S): Mewin	U. dela) 		· · · · · · · · · · · · · · · · · · ·		tub in	AKNI be	by diameter of river putting unithing but for PAGE LOF L

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-GAS HILL

N0255.FB0.050.230

WELL ID.: NASJ-159-GH- 35 -02 DATE:

Time	Water Level	Flow	Нq	Cond.	Turb.	DO	Temp.		Commonly
(Hrs.)	(Fl. below TOC)			(mS/cm)		(mg/L)	(Celsius)		Comments
1420	16.43	300	6.19	.575	112	0.40	26.8		O
1426	16.44	#83∞	6.02	.570	2	0.49	26.4		1.8 L
									
		-							
									
		 						L	
						ļ			
	· · · · · · · · · · · · · · · · · · ·							<u> </u>	
						 		<u> </u>	
									
	·							_	
······				 					
		 			60	(-	
	-		 -		///				
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				- <i>' 17</i>				
						 \			
						 ``\			
				 				-	
' ' '									
				<u> </u>		 	 		
			<u> </u>	 	 				
						 			
			i			<u> </u>			
							<u> </u>		
· · · · · · · · · · · · · · · · · · ·	-								
					····	1			
							1		

SIGNATURE(S): Eric Pak

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-GAS HILL

N0255.FB0.050.230

WELL ID.: NASJ-159-GH- 36 -02 DATE:

Time (Hrs.)	Water Level (Ft. below TOC)	Flow (mL/Min.)	pH (\$.U.)	Cond. (m\$/em)	Turb. (NTU)	DO (mg/L)	Temp. (Celsius)	Cur. 101.	Comments
1431			-5.60	0.131	519	1.46	-27.7		
1428	15.34	300						80	Start
143 [*	300	5.60	Q. /3/	519	1.46	27.7	0.9	
1436	*	300	5,51	8.45	97	1,29	26.7	2.4	
451	15.40					,,,,,,		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	stop punge -
	<u> </u>							<u> </u>	
	· · · · · · · · · · · · · · · · · · ·			Ahr					
				X-0.01	Y				
					V/				
								 -	
									note: 5 well vols=19L
									* can't force water
					-				love & while amoin
									lovel while purpos Lucto small distant
									A carine who note
									of casing the pobe
									fine.
							-		7000
					· · ·				- 9

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-GAS HILL

N0255.FB0.050.230

WELL ID.: NASJ-159-GH- 37-02

DATE:

Time	Water Level	Flow	рH	Cond.	Turb.	DO	Temp.	1)0/44	Comments
(Hrs.)	(Ft. below TOC)	(mL/Min.)	(S.U.)	(mS/em)	(NTU)	(mg/L)	(Celsius)	Volume	Comments
515	12.59	300	6.01	294	649	1.0C	26.5	0	00
10	*	300	5.94	293	215	20	as.9	1.95	gerdpunge = 5 vol
531		300						1.8	Cloudy
7.5	12.60								
			 						
				 					
		 							
	 						<u> </u>	<u> </u>	
								ļ	
									
			<u> </u>		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
					Mary.				·
					Marke			<u> </u>	
			1 . I						
			<u> </u>						
		 -		-			<u> </u>	<u> </u>	
					<u> </u>				
				 		· · · · · · · · · · · · · · · · · · ·			
								 	
·	· · · · · · · · · · · · · · · · · · ·	 		· · · · · · · · · · · · · · · · · · ·					
						<u>. </u>			
					ļ			10 1	
	<u> </u>						*	antrac	casing too narray
——		 , 		ļ — — —				<u></u> *6*	both tebin and pr

SIGNATURE(S): Mamw Del

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-GAS HILL

N0255.FB0.050.230

WELL ID.: NASJ-159-GH- 3δ -02

DATE:

9/2/1999

Time (Hrs.)	Water Level (Fl. below TOC)	Flow (mL/Min.)	pH (\$.U.)	Cond. (mS/cm)	Turb. (NTU)	DO (ma/L)	Temp. (Celsius)	Udune	Comments
1015	~15.10	300	5.90	.170	610	1.92	as. 1	Ø	5/a at
1020	15,14	300	5.90	187	213	1.06	24.6	1.56	Start End
$\overline{}$									
					ļ <u></u>				
								 	
								 	
							 	-	
					· · · · · ·				
									
						-/-			
						//			
						WC			
				<u> </u>		Xa	 		
							 		
					<u> </u>			 	
						 			
-								1	
							İ		· · · · · · · · · · · · · · · · · · ·
	·								
				i i		l	1		-

SIGNATURE(S): English

PAGE_OF_

PROJECT SITE NAME: PROJECT NUMBER:

NAS Jacksonville-GAS HILL

N0255.FB0.050.230

WELL ID.: NASJ-159-GH- 3 9 -02 DATE:

Time (Hrs.)	Water Level (Ft. below TOC)	Flow (mL/Min.)	pH (\$.U.)	Cond. (mS/cm)	Turb. (NTU)	DO (mg/L)	Temp. (Celsius)	CUM. VOI (L)	Comments
028	13.70	350	5.93	Q. 270	257	1.03	26.6	`&`	Start, Sk. cldy
1034	*	350	5.94	0,226	-10	Q.63	26.0	2.1	clear prot 5 volum
			,						ready/ to sample.
				4	1 1				
				- Mt	A				
	* constr	cted o.	SIN distr	1 casing	50 CAN'7	get p	ube don	r hole	while queging.
	Le liters			Note:	water	level.	I fea say	aples C) time 1055 WAS /3.80
SNATUR	RE(S): Mum	N. Dule	<u>-</u>					/ /	PAGE

APPENDIX G GROUNDWATER ANALYTICAL DATA

Environmental Conservation Laboratories, Inc.

4810 Executive Park Court, Suite 211 Jacksonville, Florida 32216-6069 904 / 296-3007 Fax 904 / 296-6210 www.encolabs.com

DHRS Certification No. E82277

CLIENT : Tetra Tech NUS, Inc.

ADDRESS: 661 Anderson Dr.

Foster Plaza 7

Pittsburg, PA 15220-2745

REPORT #

: JR7876

DATE SUBMITTED: July 30, 1999

DATE REPORTED : August 18, 1999

PAGE 1 OF 25

ATTENTION: Ms. Lee Leck

SAMPLE IDENTIFICATION

Samples submitted and identified by client as:

PROJECT #: NO255/CTO101

NAS JAX Gas Hill

#1	_	NASJ-159-GH-28-01	@	11:08	(07/29/99)
#2	-	NASJ-159-GH-31-01	@	11:37	$(07/29/99)^{\circ}$
#3	-	NASJ-159-GH-30-01	@	14:25	(07/29/99)
#4	-	NASJ-159-GH-29-01	@	14:29	(07/29/99)
#5	-	NASJ-159-GH-27-01	@	16:05	(07/29/99)
#6	-	NASJ-159-GH-26-01	@	16:15	(07/29/99)
#7	-	NASJ-159-GH-23-01	@	17:50	(07/29/99)
#8	-	NASJ-159-GH-25-01	@	18:04	(07/29/99)
#9	-	NASJ-159-GH-DUP1-01			(07/29/99)
#10	-	TRIPBLK			(07/28/99)

ENCO LABORATORIES

REPORT # : JR7876

DATE REPORTED: August 18, 1999
REFERENCE : NO255/CTO101
PROJECT NAME : NAS JAX Gas Hill

PAGE 2 OF 25

RESULTS OF ANALYSIS

EPA METHOD 5030/8021 -

VOLATILE ORGANICS	NASJ-159-GH-28-01	<u>Units</u>
Methyl tert-butyl ether	2.0 U	μg/L
Benzene	1.0 U	$\mu g/L$
Toluene	1.0 U	μg/L
Chlorobenzene	1.0 U	μg/L
Ethylbenzene	1.0 U	μg/L
m-Xylene & p-Xylene	2.9	μg/L
o-Xylene	1.8	μg/L
1,3-Dichlorobenzene	1.0 U	μg/L
1,4-Dichlorobenzene	1.0 U	$\mu g/L$
1,2-Dichlorobenzene	1.0 U	μ g/L
Surrogate (Bromofluorobenzene)		
Surrogate Expected Value	50	$\mu { m g}/{ m L}$
Surrogate Reported Value	42	μg/L
Surrogate Percent Recovery	84	%
Surrogate Control Limits	65-129	%
Date Analyzed	07/30/99	
		•
		,

TOTAL METALS	METHOD	<u>NASJ-159-GH-28-U1</u>	<u>Units</u>
Lead Date Analyzed	3010/6010b	0.0050 U 08/02/99	mg/L

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR7876

DATE REPORTED: August 18, 1999 REFERENCE : NO255/CTO101 PROJECT NAME : NAS JAX Gas Hill

PAGE 3 OF 25

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-28-01	<u>Units</u>
Naphthalene	0.50 U	μ g/L
Acenaphthylene	1.0 U	$\mu exttt{g/L}$
1-Methylnaphthalene	1.0 U	$\mu g/L$
2-Methylnaphthalene	1.0 Ŭ	$\mu extsf{g/L}$
Acenaphthene	0.50 U	$\mu { m g}/{ m L}$
Fluorene	0.10 U	$\mu g/L$
Phenanthrene	1.0 U	$\mu exttt{g/L}$
Anthracene	0.050 Ŭ	μg/L
Fluoranthene	0.10 U	$\mu { m g/L}$
Pyrene	0.050 IV	$\mu exttt{g/L}$
Benzo(a) anthracene	0.050 U	$\mu extsf{g}/ extsf{L}$
Chrysene	0.050 U	$\mu exttt{g/L}$
Benzo(b) fluoranthene	0.10 U	$\mu { t g}/{ t L}$
Benzo(k)fluoranthene	0.050 Ŭ	μ g/L
Benzo(a) pyrene	0.050 U	$\mu exttt{g/L}$
Dibenzo(a,h)anthracene	0.10 U	$\mu { t g}/{ t L}$
Benzo(g,h,i)perylene	0.10 U	$\mu extsf{g}/ extsf{L}$
Indeno(1,2,3-cd)pyrene	0.050 U	μ g/L
Surrogate (p-terphenyl)		,
Surrogate Expected Value	10.0	μg/L
Surrogate Reported Value	9.0	$\mu { m g/L}$
Surrogate Percent Recovery	90	%
Surrogate Control Limit	39-148	%
Date Extracted	08/04/99	
Date Analyzed	08/06/99	

V = Analyte detected in associated laboratory blank.

U = Compound was analyzed for but not detected to the level shown.

I = Analyte detected; value is between the Method Detection Level (MDL) and the Practical Quantitation Level (PQL).

REPORT # : JR7876

DATE REPORTED: August 18, 1999
REFERENCE : NO255/CTO101
PROJECT NAME : NAS JAX Gas Hill

PAGE 4 OF 25

RESULTS OF ANALYSIS

EPA METHOD 5030/8021 -

VOLATILE ORGANICS	NASJ-159-GH-31-01	<u>Units</u>
Methyl tert-butyl ether	2.0 U	$\mu { m g/L}$
Benzene	1.0 U	$\mu g/L$
Toluene	5.6	μg/L
Chlorobenzene	1.0 U	μg/L
Ethylbenzene	1.8	μg/L
m-Xylene & p-Xylene	7.9	μg/L
o-Xylene	3.8	μg/L
1,3-Dichlorobenzene	1.0 U	μg/L
1,4-Dichlorobenzene	1.0 U	$\mu g/L$
1,2-Dichlorobenzene	1.0 U	μg/L
Surrogate (Bromofluorobenzene)		•
Surrogate Expected Value	50	$\mu { m g}/{ m L}$
Surrogate Reported Value	49.5	μg/L
Surrogate Percent Recovery	99	*
Surrogate Control Limits	65-129	%
Date Analyzed	07/30/99	
TOTAL METALS METHOD	NASJ-159-GH-31-01	<u>Units</u>
Lead 3010/6010b Date Analyzed	0.0050 U 08/02/99	mg/L
Date Miaryzed	00/02/00	

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR7876

DATE REPORTED: August 18, 1999 REFERENCE: NO255/CTO101 PROJECT NAME: NAS JAX Gas Hill

PAGE 5 OF 25

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-31-01	<u>Units</u>
Naphthalene	0.50 U	μg/L
Acenaphthylene	1.0 U	μg/L
1-Methylnaphthalene	1.0 U	$\mu { m g}/{ m L}$
2-Methylnaphthalene	1.0 U	μg/L
Acenaphthene	2.6	$\mu { m g}/{ m L}$
Fluorene	0.56	$\mu { m g}/{ m L}$
Phenanthrene	1.0 U	μ g/L
Anthracene	0.050 U	$\mu extsf{g}/ extsf{L}$
Fluoranthene	0.10 U	μ g/L
Pyrene	0.050 U	$\mu { m g}/{ m L}$
Benzo(a)anthracene	0.050 U	$\mu { m g}/{ m L}$
Chrysene	0.050 U	μ g/L
Benzo(b) fluoranthene	0.10 U	μ g/L
Benzo(k) fluoranthene	0.050 U	μ g/L
Benzo(a)pyrene	0.050 U	μ g/L
Dibenzo(a,h)anthracene	0.10 U	μ g/L
Benzo(g,h,i)perylene	0.10 U	μg/L
Indeno(1,2,3-cd)pyrene	0.050 U	μg/L
Surrogate (p-terphenyl)		
Surrogate Expected Value	10.0	$\mu { m g/L}$
Surrogate Reported Value	9.8	$\mu exttt{g/L}$
Surrogate Percent Recovery	98	%
Surrogate Control Limit	39-148	8
Date Extracted	08/04/99	
Date Analyzed	08/06/99	

REPORT # : JR7876

DATE REPORTED: August 18, 1999 REFERENCE: NO255/CTO101 PROJECT NAME: NAS JAX Gas Hill

PAGE 6 OF 25

RESULTS OF ANALYSIS

EPA METHOD 5030/8021 -

VOLATILE ORGANICS		NASJ-159-GH-30-01	<u>Units</u>
Methyl tert-buty Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xyl o-Xylene 1,3-Dichlorobenz 1,4-Dichlorobenz 1,2-Dichlorobenz	ene ene ene	2.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L
Surrogate (Bromo Surrogate Expect Surrogate Report Surrogate Percen Surrogate Contro Date Analyzed	ed Value ed Value t Recovery	50 46.5 93 65-129 07/30/99	μg/L μg/L %
TOTAL METALS	<u>METHOD</u>	NASJ-159-GH-30-01	<u>Units</u>
Lead Date Analyzed	3010/6010b	0.0050 U 08/02/99	mg/L

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR7876

DATE REPORTED: August 18, 1999
REFERENCE : NO255/CTO101
PROJECT NAME : NAS JAX Gas Hill

PAGE 7 OF 25

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-30-01	<u>Units</u>
Naphthalene	0.50 U	$\mu { t g}/{ t L}$
Acenaphthylene	1.0 U	$\mu { t g}/{ t L}$
1-Methylnaphthalene	2.3	μ g/L
2-Methylnaphthalene	1.0 U	$\mu g/L$
Acenaphthene	3.3	$\mu { m g/L}$
Fluorene	0.10 I	μ g/L
Phenanthrene	1.0 U	μ g/L
Anthracene	0.050 U	μ g/L
Fluoranthene	0.10 U	μ g/L
Pyrene	0.14 IV	$\mu g/L$
Benzo(a)anthracene	0.050 U	μg/L
Chrysene	0.050 U	μ g/L
Benzo(b)fluoranthene	0.10 U	μ g/L
Benzo(k)fluoranthene	0.050 U	μg/L
Benzo(a)pyrene	0.050 U	μg/L
Dibenzo(a,h)anthracene	0.10 U	μg/L
Benzo(g,h,i)perylene	0.10 U	μg/L
Indeno(1,2,3-cd)pyrene	0.050 U	$\mu \mathrm{g/L}$
Surrogate (p-terphenyl)		
Surrogate Expected Value	10.0	μg/L
Surrogate Reported Value	7.6	μg/L
Surrogate Percent Recovery	76	. 0/0 0/0
Surrogate Control Limit	39-148	%
Date Extracted	08/04/99	
Date Analyzed	08/06/99	

V = Analyte detected in associated laboratory blank.

U = Compound was analyzed for but not detected to the level shown.

I = Analyte detected; value is between the Method Detection Level (MDL) and the Practical Quantitation Level (PQL).

REPORT # : JR7876

DATE REPORTED: August 18, 1999 REFERENCE: NO255/CTO101 PROJECT NAME: NAS JAX Gas Hill

PAGE 8 OF 25

RESULTS OF ANALYSIS

EPA METHOD 5030/8021 -

VOLATILE ORGANICS		<u>NASJ-159-GH-29-01</u>	<u>Units</u>	
Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene		2.0 U 47 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	
Surrogate (Brome Surrogate Expect Surrogate Report Surrogate Percet Surrogate Contro Date Analyzed	ted Value ted Value nt Recovery	50 50 100 65-129 07/30/99	µg/L µg/L %	
TOTAL METALS	METHOD	NASJ-159-GH-29-01	<u>Units</u>	
Lead Date Analyzed	3010/6010b	0.0050 U 08/02/99	mg/L	

REPORT # : JR7876

DATE REPORTED: August 18, 1999
REFERENCE : NO255/CTO101
PROJECT NAME : NAS JAX Gas Hill

PAGE 9 OF 25

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-29-01	<u>Units</u>
Naphthalene	0.50 U	μ g/L
Acenaphthylene	1.0 U	μg/L
1-Methylnaphthalene	1.0 U	μg/L
2-Methylnaphthalene	1.0 U	μg/L
Acenaphthene	4.4	μg/L
Fluorene	2.1	μg/L
Phenanthrene	1.0 U	μg/L
Anthracene	0.11 I	μg/L
Fluoranthene	0.12 I	μg/L
Pyrene	0.050 U	μg/L
Benzo(a)anthracene	0.050 U	μg/L
Chrysene	0.050 U	μg/L
Benzo(b)fluoranthene	0.10 U	μg/L
Benzo(k)fluoranthene	0.050 U	μg/L
Benzo(a)pyrene	0.050 U	$\mu g/L$
Dibenzo(a,h)anthracene	0.10 U	μg/L
Benzo(g,h,i)perylene	0.10 U	μg/L
Indeno(1,2,3-cd)pyrene	0.050 U	$\mu g/L$
Surrogate (p-terphenyl)		
Surrogate Expected Value	10.0	μg/L
Surrogate Reported Value	9.3	μg/L
Surrogate Percent Recovery	93	%
Surrogate Control Limit	39-148	%
Date Extracted	08/04/99	
Date Analyzed	08/06/99	

U = Compound was analyzed for but not detected to the level shown.

I = Analyte detected; value is between the Method Detection Level (MDL) and the Practical Quantitation Level (PQL).

REPORT # : JR7876

DATE REPORTED: August 18, 1999 REFERENCE: NO255/CTO101 PROJECT NAME: NAS JAX Gas Hill

PAGE 10 OF 25

RESULTS OF ANALYSIS

EPA METHOD 5030/8021 -

VOLATILE ORGANICS	NASJ-159-GH-27-01	<u>Units</u>
Methyl tert-butyl ether Benzene	2.0 U 31	μg/L μg/L
Toluene Chlorobenzene	1.0 U 1.0 U	μg/L μg/L
Ethylbenzene m-Xylene & p-Xylene	1.0 U 1.0 U	μg/L μg/L
o-Xylene 1,3-Dichlorobenzene	1.0 U 1.0 U	μg/L μg/L
1,4-Dichlorobenzene 1,2-Dichlorobenzene	1.0 U 1.0 U	μg/L
Surrogate (Bromofluoroben		μg/L
Surrogate Expected Value Surrogate Reported Value	50 50	μg/L
Surrogate Percent Recover	y 100	μg/L % %
Surrogate Control Limits Date Analyzed	65-129 07/30/99	6
TOTAL METALS METHO	NASJ-159-GH-27-01	<u>Units</u>
Lead 3010/60 Date Analyzed	10b 0.0050 U 08/02/99	mg/L

 $^{{\}tt U}={\tt Compound}$ was analyzed for but not detected to the level shown.

REPORT # : JR7876

DATE REPORTED: August 18, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 11 OF 25

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-27-01	<u>Units</u>
Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene	0.50 U 1.0 U 1.0 U 1.0 U 0.50 U 0.10 U 1.0 U 0.050 U 0.10 U 0.050 U 0.050 U 0.050 U 0.050 U 0.10 U 0.050 U 0.10 U 0.050 U 0.10 U 0.050 U 0.10 U 0.050 U	μα/L μαση μαση μαση μαση μαση μαση μαση μαση
Surrogate (p-terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limit Date Extracted Date Analyzed	10.0 6.3 63 39-148 08/04/99 08/06/99	μg/L μg/L % %

REPORT # : JR7876

DATE REPORTED: August 18, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 12 OF 25

EPA METHOD 5030/8021 - VOLATILE ORGANICS		NASJ-159-GH-26-01	<u>Units</u>
Methyl tert-buty	yl ether	2.0 U	μ g/L
Benzene		9.9	μ g/L
Toluene		1.0 U	μ g/L
Chlorobenzene		1.0 U	μ g/L
Ethylbenzene	•	1.0 U	$\mu { t g}/{ t L}$
m-Xylene & p-Xyl	lene	1.0 U	$\mu extsf{g/L}$
o-Xylene		1.0 U	μ g/L
1,3-Dichlorobenz		1.0 U	μ g/L
1,4-Dichlorobenz	zene	1.0 U	$\mu exttt{g/L}$
1,2-Dichlorobenzene		1.0 U	$\mu { m g/L}$
Surrogate (Bromo	ofluorobenzene)		
Surrogate Expect	ced Value	50	μ g/L
Surrogate Report	ced Value	51	μg/L
Surrogate Percer	nt Recovery	102	%
Surrogate Contro	ol Limits	65-129	%
Date Analyzed		07/30/99	
TOTAL METALS	METHOD	NASJ-159-GH-26-01	<u>Units</u>
Lead Date Analyzed	3010/6010b	0.0050 U 08/02/99	mg/L
		• •	

 $^{{\}tt U}={\tt Compound}$ was analyzed for but not detected to the level shown.

REPORT # : JR7876

DATE REPORTED: August 18, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 13 OF 25

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-26-01	<u>Units</u>
Naphthalene	0.50 U	μg/L
Acenaphthylene	1.0 U	μg/L
1-Methylnaphthalene	1.0 U	$\mu { m g}/{ m L}$
2-Methylnaphthalene	1.0 U	$\mu { m g}/{ m L}$
Acenaphthene	0.50 U	μg/L
Fluorene	0.10 U	$\mu { t g}/{ t L}$
Phenanthrene	1.0 U	$\mu g/L$
Anthracene	0.050 U	$\mu g/L$
Fluoranthene	0.10 U	$\mu { t g}/{ t L}$
Pyrene	0.050 U	μg/L
Benzo(a)anthracene	0.050 U	$\mu { m g}/{ m L}$
Chrysene	0.050 U	$\mu { m g}/{ m L}$
Benzo(b)fluoranthene	0.10 U	$\mu g/L$
Benzo(k)fluoranthene	0.050 U	$\mu exttt{g}/ exttt{L}$
Benzo(a)pyrene	0.050 U	μg/L
Dibenzo(a,h)anthracene	0.10 U	$\mu { m g}/{ m L}$
Benzo(g,h,i)perylene	0.10 U	$\mu { m g}/{ m L}$
Indeno(1,2,3-cd)pyrene	0.050 U	μg/L
Surrogate (p-terphenyl)		
Surrogate Expected Value	10.0	μg/L
Surrogate Reported Value	7.5	μg/L
Surrogate Percent Recovery	75	%
Surrogate Control Limit	39-148	%
Date Extracted	08/04/99	
Date Analyzed	08/06/99	

REPORT # : JR7876

DATE REPORTED: August 18, 1999 REFERENCE : NO255/CTO101 PROJECT NAME : NAS JAX Gas Hill

PAGE 14 OF 25

08/02/99

RESULTS OF ANALYSIS

VOLATILE ORGANICS		NASJ-159-GH-23-01		<u>Units</u>
Methyl tert-buty Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylo-Xylene 1,3-Dichlorobenz 1,4-Dichlorobenz 1,2-Dichlorobenz	lene zene zene	10 U 100 12 5.0 U 44 76 37 5.0 U 5.0 U	D1	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L
Surrogate (Brome Surrogate Expect Surrogate Report Surrogate Percer Surrogate Contro Date Analyzed	ced Value ced Value nt Recovery	50 * * 65-129 07/30/99		µg/L µg/L %
TOTAL METALS	<u>METHOD</u>	NASJ-159-GH-2	23-01	<u>Units</u>
Lead	3010/6010b	0.0050 U	_	mg/L

EPA METHOD 5030/8021 -

Date Analyzed

^{* =} Surrogate recovery unavailable due to matrix interference.
U = Compound was analyzed for but not detected to the level shown.
D1 = Analyte value determined from a 1:5 dilution.

REPORT # : JR7876

DATE REPORTED: August 18, 1999
REFERENCE : NO255/CTO101
PROJECT NAME : NAS JAX Gas Hill

PAGE 15 OF 25

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-23-01	*****
imi bi mic	NASU-133-GH-23-01	<u>Units</u>
Naphthalene	4.3	$\mu { t g}/{ t L}$
Acenaphthylene	1.0 U	μg/L
1-Methylnaphthalene	1.0 U	μg/L
2-Methylnaphthalene	1.0 U	μg/L
Acenaphthene	0.50 U	μg/L
Fluorene	0.10 U	μg/L
Phenanthrene	1.0 U	μg/L
Anthracene	0.050 U	μg/L
Fluoranthene	0.10 U	μg/L
Pyrene	0.050 U	$\mu { m g}/{ m L}$
Benzo(a)anthracene	0.050 U	$\mu { m g}/{ m L}$
Chrysene	0.050 U	$\mu { m g}/{ m L}$
Benzo(b)fluoranthene	0.10 U	$\mu { m g}/{ m L}$
Benzo(k)fluoranthene	0.050 U	$\mu { m g}/{ m L}$
Benzo(a)pyrene	0.050 U	μg/L
Dibenzo(a,h)anthracene	0.10 U	$\mu { m g}/{ m L}$
Benzo(g,h,i)perylene	0.10 U	$\mu { m g}/{ m L}$
Indeno(1,2,3-cd)pyrene	0.050 U	$\mu g/L$
Surrogate (p-terphenyl)		
Surrogate Expected Value	10.0	μg/L
Surrogate Reported Value	7.6	μg/L
Surrogate Percent Recovery	76	. %
Surrogate Control Limit	39-148	%
Date Extracted	08/04/99	
Date Analyzed	08/06/99	

REPORT # : JR7876

DATE REPORTED: August 18, 1999 REFERENCE : NO255/CTO101 PROJECT NAME : NAS JAX Gas Hill

PAGE 16 OF 25

RESULTS OF ANALYSIS

EPA METHOD 5030/8021 -

VOLATILE ORGANI	<u>CS</u>	NASJ-159-GH-25-01	<u>Units</u>
Methyl tert-but	yl ether	2.0 U	μg/L
Benzene		1.0 U	μg/L
Toluene		1.0 U	μg/L
Chlorobenzene		1.0 U	μg/L
Ethylbenzene		1.0 U	μg/L
m-Xylene & p-Xy	lene	1.0 U	$\mu { m g}/{ m L}$
o-Xylene		1.0 U	$\mu { m g}/{ m L}$
1,3-Dichloroben	zene	1.0 U	$\mu { m g}/{ m L}$
1,4-Dichloroben		1.0 U	$\mu { m g}/{ m L}$
1,2-Dichloroben	zene	1.0 U	μ g/L
Surrogate (Brom	ofluorobenzene)		
Surrogate Expec		50	μg/L
Surrogate Repor		48.5	μg/L
Surrogate Perce		97	,) ' %
Surrogate Contr		65-129	8
Date Analyzed		07/30/99	
TOTAL METALS	METHOD	NASJ-159-GH-25-01	<u>Units</u>
Lead Date Analyzed	3010/6010b	0.0050 U 08/02/99	mg/L

TOTAL METALS	METHOD	NASJ-159-GH-25-U1	<u>Units</u>
Lead Date Analyzed	3010/6010b	0.0050 U 08/02/99	mg/L

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR7876

DATE REPORTED: August 18, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 17 OF 25

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-25-01	<u>Units</u>
Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene	0.50 U 1.0 U 1.0 U 1.0 U 0.50 U 0.10 U 1.0 U 0.050 U 0.10 U 0.050 U 0.050 U 0.050 U 0.10 U 0.050 U 0.10 U 0.050 U 0.10 U 0.050 U 0.10 U 0.050 U 0.10 U 0.050 U	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L
Surrogate (p-terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limit Date Extracted Date Analyzed	10.0 8.6 86 39-148 08/04/99 08/06/99	μg/L μg/L % %

REPORT # : JR7876

DATE REPORTED: August 18, 1999
REFERENCE : NO255/CTO101
PROJECT NAME : NAS JAX Gas Hill

PAGE 18 OF 25

EPA METHOD 5030 VOLATILE ORGANI	-	NASJ-159-GH-DUP1-01	<u>Units</u>
Methyl tert-but Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xy o-Xylene 1,3-Dichloroben 1,4-Dichloroben 1,2-Dichloroben	lene zene zene	2.0 U 7.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L
Surrogate (Brome Surrogate Expect Surrogate Report Surrogate Percent Surrogate Contro Date Analyzed	ted Value ted Value nt Recovery	50 45 90 65-129 08/04/99	μg/L μg/L % %
TOTAL METALS	METHOD	NASJ-159-GH-DUP1-01	<u>Units</u>
Lead Date Analyzed	3010/6010b	0.0050 U 08/02/99	mg/L

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR7876

DATE REPORTED: August 18, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 19 OF 25

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-DUP1-01	Units
Naphthalene	0.50 U	$\mu { t g}/{ t L}$
Acenaphthylene	1.0 U	μg/L
1-Methylnaphthalene	1.0 U	μg/L
2-Methylnaphthalene	1.0 U	μg/L
Acenaphthene	0.50 U	μg/L
Fluorene	0.10 U	μg/L
Phenanthrene	1.0 U	μg/L
Anthracene	0.050 U	μg/L
Fluoranthene	0.10 Ŭ	$\mu { m g}/{ m L}$
Pyrene	0.050 U	μg/L
Benzo(a) anthracene	0.050 U	$\mu g/L$
Chrysene	0.050 U	μg/L
Benzo(b) fluoranthene	0.10 U	μg/L
Benzo(k)fluoranthene	0.050 T	μg/L
Benzo(a)pyrene	0.050 Ŭ	μg/L
Dibenzo(a,h)anthracene	0.10 U	$\mu g/L$
Benzo(g,h,i)perylene	0.10 U	$\mu { m g}/{ m L}$
Indeno(1,2,3-cd)pyrene	0.050 U	$\mu { t g}/{ t L}$
Surrogate (p-terphenyl)		
Surrogate Expected Value	10.0	μg/L
Surrogate Reported Value	6.3	μg/L
Surrogate Percent Recovery	63	%
Surrogate Control Limit	39-148	%
Date Extracted	08/04/99	
Date Analyzed	08/06/99	

REPORT # : JR7876

DATE REPORTED: August 18, 1999 REFERENCE: NO255/CTO101 PROJECT NAME: NAS JAX Gas Hill

PAGE 20 OF 25

EPA METHOD 5030/8021 -		
VOLATILE ORGANICS	TRIPBLK	<u>Units</u>
Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	2.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L
Surrogate (Bromofluorobenzene) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limits Date Analyzed	50 48 96 65-129 07/30/99	μg/L % %

REPORT # : JR7876

DATE REPORTED: August 18, 1999 REFERENCE: NO255/CTO101 PROJECT NAME: NAS JAX Gas Hill

PAGE 21 OF 25

EPA METHOD 5030/8021 - VOLATILE ORGANICS	LAB BLANK	<u>Units</u>
Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	2.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L
Surrogate (Bromofluorobenzene) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limits Date Analyzed	50 47.5 95 65-129 07/30/99	μg/L μg/L % %
TOTAL METALS METHOD	LAB BLANK	<u>Units</u>
Lead 3010/6010b Date Analyzed	0.0050 U 08/02/99	mg/L

REPORT # : JR7876

DATE REPORTED: August 18, 1999
REFERENCE : NO255/CTO101
PROJECT NAME : NAS JAX Gas Hill

PAGE 22 OF 25

EPA METHOD 3510/8310 -		•
PAH BY HPLC	LAB BLANK	<u>Units</u>
Naphthalene	0.50 U	μ g/L
Acenaphthylene	1.0 U	μg/L
1-Methylnaphthalene	1.0 U	μg/L
2-Methylnaphthalene	1.0 U	μg/L
Acenaphthene	0.50 U	μg/L
Fluorene	0.10 U	μg/L
Phenanthrene	1.0 U	μg/L
Anthracene	0.050 U	μg/L
Fluoranthene	0.10 Ŭ	μg/L
Pyrene	0.13 I	$\mu { t g}/{ t L}$
Benzo(a)anthracene	0.050 U	μg/L
Chrysene	0.050 Ŭ	μg/L
Benzo(b)fluoranthene	0.10 U	μg/L
Benzo(k)fluoranthene	0.050 U	μg/L
Benzo(a)pyrene	0.050 U	μg/L
Dibenzo(a,h)anthracene	0.10 U	μg/L
Benzo(g,h,i)perylene	0.10 U	μg/L
Indeno(1,2,3-cd)pyrene	0.050 U	$\mu g/L$
Surrogate (p-terphenyl)		
Surrogate Expected Value	10.0	μ g/L
Surrogate Reported Value	7.5	μ g/L
Surrogate Percent Recovery	75	8
Surrogate Control Limit	39-148	%
Date Extracted	08/04/99	
Date Analyzed	08/05/99	

U = Compound was analyzed for but not detected to the level shown.

I = Analyte detected; value is between the Method Detection Level (MDL) and the Practical Quantitation Level (PQL).

REPORT # : JR7876

DATE REPORTED: August 18, 1999
REFERENCE : NO255/CTO101
PROJECT NAME : NAS JAX Gas Hill

PAGE 23 OF 25

EPA METHOD 5030/8021 - VOLATILE ORGANICS	IAD DIAME	•.
VOLATILE ORGANICS	<u>LAB BLANK</u>	<u>Units</u>
Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	2.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L
Surrogate (Bromofluorobenzene) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limits Date Analyzed	50 - 48 - 96 - 65-129 - 07/31/99	μg/L μg/L % %

REPORT # : JR7876

DATE REPORTED: August 18, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 24 OF 25

EPA METHOD 5030/8021 -		
VOLATILE ORGANICS	LAB BLANK	<u>Units</u>
Methyl tert-butyl ether	2.0 U	μg/L
Benzene	1.0 U	μg/L
Toluene	1.0 U	μg/L
Chlorobenzene	1.0 U	μg/L
Ethylbenzene	1.0 U	μg/L
m-Xylene & p-Xylene	1.0 U	μg/L
o-Xylene	1.0 U	μg/L
1,3-Dichlorobenzene	1.0 U	μg/L
1,4-Dichlorobenzene	1.0 U	μg/L
1,2-Dichlorobenzene	1.0 U	μg/L
Surrogate (Bromofluorobenzene)		
Surrogate Expected Value	50	μg/L
Surrogate Reported Value	46.5	μg/L
Surrogate Percent Recovery	93	
Surrogate Control Limits	65-129	000 00
Date Analyzed	08/03/99	

REPORT # : JR7876

DATE REPORTED: August 18, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 25 OF 25

QUALITY CONTROL DATA

		LCS			
	% RECOVERY	TARGET	ACCEPT	% RPD	ACCEPT
Parameter	MS/MSD/LCS	μ α/Γ	<u>LIMITS</u>	MS/MSD	<u>LIMITS</u>
EPA Method 5030/8021					
Benzene	95/ 86/ 97	. 20	60-138	10	17
Toluene	103/ 91/106	20	57-138	12	16
Ethylbenzene	101/ 91/104	20	49-144	10	17
o-Xylene	100/ 91/104	20	50-151	9	17
EPA Method 3510/8310	•				
Naphthalene	117/108/ 86	10	22-130	8	20
Acenaphthene	94/ 88/ 87	10	14-163	6	19
Benzo(a)pyrene	62/60/97	1	33-137	3	36
Benzo(g,h,i)perylene	50/ 48/ 91	2	36-135	4	34
Total Metals					
Lead, 3010/6010b	102/103/104	1	68-126	<1	19

NOTE: Pb LCS target units are mg/L

Environmental Conservation Laboratories Comprehensive QA Plan #960038

< = Less Than

MS = Matrix Spike

MSD = Matrix Spike Duplicate

LCS = Laboratory Control Standard RPD = Relative Percent Difference

This report shall not be reproduced except in full, without the written approval of the laboratory. Results for these procedures apply only to the samples as submitted.

sample_no	run_number	parameter	method		idl mdl	crdl_crql	dil_factor	pct moist
NASJ-159-GH-23-01	1	Lead	3010/6010	mg/L	0.003	0.005	_ 1	
NASJ-159-GH-23-01	1	Naphthalene	3510/8310	ug/L	0.2	0.5	1	
NASJ-159-GH-23-01	1	Acenaphthylene	3510/8310	ug/L	0.1	1	1	
NASJ-159-GH-23-01	1	1-Methylnaphthalene	3510/8310	ug/L	0.1	1	1	
NASJ-159-GH-23-01	1	2-Methylnaphthalene	3510/8310	ug/L	0.2	1	1	
NASJ-159-GH-23-01	1	Acenaphthene	3510/8310	ug/L	0.2	0.5	1	
NASJ-159-GH-23-01	1	Fluorene	3510/8310	ug/L	0.04	0.1	1	
NASJ-159-GH-23-01	1	Phenanthrene	3510/8310	ug/L	0.04	1	1	
NASJ-159-GH-23-01	1	Anthracene	3510/8310	ug/L	0.03	0.05	1	
NASJ-159-GH-23-01	1	Fluoranthene	3510/8310	ug/L	0.04	0.1	1	
NASJ-159-GH-23-01	1	Pyrene	3510/8310	ug/L	0.04		1	
NASJ-159-GH-23-01	1	Benzo(a) anthracene	3510/8310	ug/L	0.02	0.05	1	
NASJ-159-GH-23-01	1	Chrysene	3510/8310	ug/L	0.02	0.05	1	
NASJ-159-GH-23-01	1	Benzo(b)fluoranthene	3510/8310	ug/L	0.06	0.1	1	
NASJ-159-GH-23-01	1	Benzo(k) fluoranthene	3510/8310	ug/L	0.03	0.05	1	
NASJ-159-GH-23-01	1	Benzo(a)pyrene	3510/8310	ug/L	0.03	0.05	1	
NASJ-159-GH-23-01	1	Dibenzo(a,h)anthracene	3510/8310	ug/L	0.07	0.1	1	
NASJ-159-GH-23-01	1	Benzo(g,h,i)perylene	3510/8310	ug/L	0.07	0.1	1	
NASJ-159-GH-23-01	1	Indeno(1,2,3-cd)pyrene	3510/8310	ug/L	0.02	0.05	1	
NASJ-159-GH-23-01	1	P-Terphenyl	3510/8310	*			1	
NASJ-159-GH-23-01	1	Methyl tert-butyl ether	5030/8021	ug/L	1.5	10	5	
NASJ-159-GH-23-01	1	Benzene	5030/8021	ug/L	1	5	5	
NASJ-159-GH-23-01	1	Toluene	5030/8021	ug/L	2	5	5	
NASJ-159-GH-23-01	1	Chlorobenzene	5030/8021	ug/L	2	5	5	
NASJ-159-GH-23-01	1	Ethylbenzene	5030/8021	ug/L	1	5	5	
NASJ-159-GH-23-01	1	m-Xylene & p-Xylene	5030/8021	ug/L	1.5	5	5	
NASJ-159-GH-23-01	1	o-Xylene	5030/8021	ug/L	1	5	5	
NASJ-159-GH-23-01	1	1,3-Dichlorobenzene	5030/8021	ug/L	3	5	5	
NASJ-159-GH-23-01	1	1,4-Dichlorobenzene	5030/8021	ug/L	2	5	5	
NASJ-159-GH-23-01	1	1,2-Dichlorobenzene	5030/8021	ug/L	3	5	5	
NASJ-159-GH-23-01	1	Bromofluorobenzene	5030/8021	*			5 .	
NASJ-159-GH-25-01	1	Lead	3010/6010	٥.	0.003	0.005	1	
NASJ-159-GH-25-01	1	Naphthalene	3510/8310	ug/L	0.2	0.5	1	
NASJ-159-GH-25-01	1	Acenaphthylene	3510/8310	ug/L	0.1	1	1	
NASJ-159-GH-25-01	1	1-Methylnaphthalene	3510/8310	ug/L	0.1	1	1	
NASJ-159-GH-25-01	1	2-Methylnaphthalene	3510/8310	ug/L	0.2	1	1	
NASJ-159-GH-25-01	1	Acenaphthene	3510/8310	ug/L	0.2	0.5	1	•
NASJ-159-GH-25-01	1	Fluorene	3510/8310	ug/L	0.04		1	
NASJ-159-GH-25-01	1	Phenanthrene	3510/8310	ug/L	0.04	_	1	
NASJ-159-GH-25-01	1	Anthracene	3510/8310	ug/L	0.03		1	
NASJ-159-GH-25-01	1	Fluoranthene	3510/8310	ug/L	0.04		1	
NASJ-159-GH-25-01	1	Pyrene	3510/8310	ug/L	0.04		1	
NASJ-159-GH-25-01	1	Benzo(a) anthracene	3510/8310	ug/L	0.02		1	
NASJ-159-GH-25-01	1	Chrysene	3510/8310	ug/ L	0.02		1	
NASJ-159-GH-25-01	1	Benzo(b) fluoranthene	3510/8310	ug/L	0.06		1	
NASJ-159-GH-25-01	1	Benzo(k)fluoranthene	3510/8310	ug/L	0.03		1	
NASJ-159-GH-25-01	1	Benzo(a)pyrene	3510/8310	ug/L	0.03		1	
NASJ-159-GH-25-01	1	Dibenzo(a,h)anthracene	3510/8310	ug/L	0.07		1	
NASJ-159-GH-25-01	1	Benzo(g,h,i)perylene	3510/8310	ug/L	0.07		1	
NASJ-159-GH-25-01	1	Indeno(1,2,3-cd)pyrene	3510/8310	ug/L	0.02	0.05	1	
NASJ-159-GH-25-01	1	P-Terphenyl	3510/8310	¥ ,-	_		1	
NASJ-159-GH-25-01	1	Methyl tert-butyl ether	5030/8021	ug/L	0.3	2	1	
NASJ-159-GH-25-01	1	Benzene	5030/8021	ug/L	0.2	1	1	
NASJ-159-GH-25-01	1	Toluene	5030/8021	ug/L	0.4	1	1	
NASJ-159-GH-25-01	1	Chlorobenzene	5030/8021	ug/L	0.4	1	1 .	
NASJ-159-GH-25-01	1	Ethylbenzene	5030/8021	ug/L	0.2	1	. 1	•
NASJ-159-GH-25-01	1	m-Xylene & p-Xylene	5030/8021	ug/L	0.3	1	1	
NASJ-159-GH-25-01	1	o-Xylene	5030/8021	ug/L	0.2	1	1	
NASJ-159-GH-25-01	1	1,3-Dichlorobenzene	5030/8021	ug/L	0.6	1	1	
NASJ-159-GH-25-01	1	1,4-Dichlorobenzene	5030/8021	ug/L	0.4	. 1	1	
NASJ-159-GH-25-01	1	1,2-Dichlorobenzene	5030/8021	ug/L	0.6	1	1	
NASJ-159-GH-25-01	1	Bromofluorobenzene	5030/8021	ક્ર			1	

	_	_ ,					
NASJ-159-GH-26-01	1	Lead	3010/6010	mg/L (0.005	1
NASJ-159-GH-26-01	_ 1	Naphthalene	3510/8310	ug/L	0.2	0.5	1
NASJ-159-GH-26-01	- 1	Acenaphthylene	3510/8310	ug/L	0.1	1.	1
NASJ-159-GH-26-01	1	1-Methylnaphthalene	3510/8310	ug/L	0.1	1	1
NASJ-159-GH-26-01	1	2-Methylnaphthalene	3510/8310	ug/L	0.2	ı	1
NASJ-159-GH-26-01	1	Acenaphthene	3510/8310	ug/L	0.2	0.5	1
NASJ-159-GH-26-01	1	Fluorene	3510/8310	ug/L	0.04	0.1	
NASJ-159-GH-26-01	1	Phenanthrene	3510/8310	ug/L	0.04		1
	1			•		1	1
NASJ-159-GH-26-01		Anthracene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-26-01	1	Fluoranthene	3510/8310	ug/L	0.04	0.1	1
NASJ-159-GH-26-01	1	Pyrene	3510/8310	ug/L	0.04	0.05	1
NASJ-159-GH-26-01	1	Benzo(a)anthracene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-26-01	1	Chrysene	3510/8310	uq/L	0.02	0.05	1
NASJ-159-GH-26-01	1	Benzo(b)fluoranthene	3510/8310	ug/L	0.06	0.1	1
NASJ-159-GH-26-01	1	Benzo(k) fluoranthene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-26-01	1			-			
		Benzo(a) pyrene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-26-01	1	Dibenzo(a,h)anthracene	3510/8310	ug/L	0.07	0.1	1
NASJ-159-GH-26-01	1	Benzo(g,h,i)perylene	3510/8310	ug/L	0.07	0.1	1
NASJ-159-GH-26-01	1	Indeno(1,2,3-cd)pyrene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-26-01	1	P-Terphenyl	3510/8310	ક			1
NASJ-159-GH-26-01	1	Methyl tert-butyl ether	5030/8021	ug/L	0.3	2	1
NASJ-159-GH-26-01	1	Benzene	5030/8021	ug/L	0.2	1	1
NASJ-159-GH-26-01	1	Toluene	5030/8021	ug/L	0.4	i	
	1		· ·	-			1
NASJ-159-GH-26-01		Chlorobenzene	5030/8021	. ug/L	0.4	1	1
NASJ-159-GH-26-01	1	Ethylbenzene	5030/8021	ug/L	0.2	ı	1
NASJ-159-GH-26-01	1	m-Xylene & p-Xylene	5030/8021	ug/L	0.3	1	1
NASJ-159-GH-26-01	1	o-Xylene	5030/8021	ug/L	0.2	1	1
NASJ-159-GH-26-01	1	1,3-Dichlorobenzene	5030/8021	ug/L	0.6	1	1
NASJ-159-GH-26-01	1	1,4-Dichlorobenzene	5030/8021	ug/L	0.4	ı	1
NASJ-159-GH-26-01	1	1,2-Dichlorobenzene	5030/8021	ug/L	0.6	ī	ı
NASJ-159-GH-26-01	1	Bromofluorobenzene	5030/8021	8	0.0	_	
NASU-139-GH-20-U1		promorraoropenzene	3030/0021	•			1
	_	* 3	2020/5020	/=			
NASJ-159-GH-27-01	1	Lead	3010/6010	٠.	0.003	0.005	1
NASJ-159-GH-27-01 NASJ-159-GH-27-01	1	Naphthalene	3510/8310	ug/L	0.2	0.005 0.5	1
	_			٠.			
NASJ-159-GH-27-01	1	Naphthalene	3510/8310	ug/L	0.2	0.5	1
NASJ-159-GH-27-01 NASJ-159-GH-27-01	1	Naphthalene Acenaphthylene	3510/8310 3510/8310	ug/L ug/L	0.2 0.1	0.5 1	1 1
NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01	1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene	3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2	0.5 1 1	1 1 1
NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01	1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2	0.5 1 1 1 0.5	1 1 1 1
NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01	1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2	0.5 1 1 0.5	1 1 1 1 1
NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01	1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04	0.5 1 1 0.5 0.1	1 1 1 1 1
NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01	1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04	0.5 1 1 0.5 0.1 1	1 1 1 1 1 1
NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01	1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03	0.5 1 1 0.5 0.1 1 0.05 0.1	1 1 1 1 1 1 1
NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01	1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04	0.5 1 1 0.5 0.1 1	1 1 1 1 1 1
NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01	1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03	0.5 1 1 0.5 0.1 1 0.05 0.1	1 1 1 1 1 1 1
NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01	1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.03 0.04 0.03 0.04 0.04	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.05	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(k) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.2 0.2 0.04 0.03 0.04 0.04 0.02 0.02 0.06 0.03 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Dibenzo(a, h, i) perylene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(k) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.2 0.2 0.04 0.03 0.04 0.04 0.02 0.02 0.06 0.03 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01 NASJ-159-GH-27-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Dibenzo(a, h, i) perylene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-27-01 NASJ-159-GH-27-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(a,h) aphthracene Benzo(a,h) aphthracene Benzo(a,h) anthracene Benzo(a,h) aphthracene Benzo(a,h) aphthracene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	
NASJ-159-GH-27-01 NASJ-159-GH-27-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Benzo(g, h, i) perylene Indeno(1, 2, 3 - cd) pyrene P-Terphenyl	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	
NASJ-159-GH-27-01 NASJ-159-GH-27-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Dibenzo(a, h) arthracene Benzo(g, h, i) perylene Indeno(1, 2, 3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07 0.07	0.5 1 1 0.5 0.1 0.05 0.1 0.05 0.05 0.05	
NASJ-159-GH-27-01 NASJ-159-GH-27-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Dibenzo(a,h) aphracene P-Terphenyl Methyl tert-butyl ether Benzene Toluene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.05 0.03 0.07 0.07 0.07 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	
NASJ-159-GH-27-01 NASJ-159-GH-27-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Dibenzo(a, h) enthracene Benzo(g, h, i) perylene Indeno(1, 2, 3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02 0.3 0.2 0.4 0.4	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	
NASJ-159-GH-27-01 NASJ-159-GH-27-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Genzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02 0.4 0.4 0.4 0.2	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	
NASJ-159-GH-27-01 NASJ-159-GH-27-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02	0.5 1 1 0.5 0.1 0.05 0.1 0.05 0.05 0.05	
NASJ-159-GH-27-01 NASJ-159-GH-27-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Genzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02 0.4 0.4 0.4 0.2	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	
NASJ-159-GH-27-01 NASJ-159-GH-27-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02	0.5 1 1 0.5 0.1 0.05 0.1 0.05 0.05 0.05	
NASJ-159-GH-27-01 NASJ-159-GH-27-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(a,h) pyrene Dibenzo(a,h) aphracene F-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene	3510/8310 3510/8021 5030/8021 5030/8021 5030/8021 5030/8021 5030/8021	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02	0.5 1 1 0.5 0.1 0.05 0.1 0.05 0.05 0.05	
NASJ-159-GH-27-01 NASJ-159-GH-27-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Glenzo(g, h, i) perylene Indeno(1, 2, 3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 0-Xylene 1, 3-Dichlorobenzene 1, 4-Dichlorobenzene	3510/8310 3510/8021 5030/8021 5030/8021 5030/8021 5030/8021 5030/8021 5030/8021 5030/8021 5030/8021 5030/8021	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02 0.4 0.4 0.2 0.3 0.2 0.4 0.4 0.2 0.3 0.2 0.4 0.4 0.2 0.3 0.2 0.4 0.4 0.2 0.3 0.2 0.4 0.4 0.2 0.3 0.2 0.4 0.4 0.2 0.3 0.2 0.4 0.4 0.2 0.3 0.2 0.4 0.4 0.2 0.3 0.2 0.4 0.4 0.2 0.3 0.2 0.4 0.4 0.2 0.3 0.2 0.4 0.4 0.2 0.3 0.2 0.4 0.4 0.2 0.3 0.2 0.4 0.4 0.2 0.3	0.5 1 1 0.5 0.1 0.05 0.1 0.05 0.05 0.05	
NASJ-159-GH-27-01 NASJ-159-GH-27-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(k) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 0-Xylene 1,3-Dichlorobenzene	3510/8310 3510/8021 5030/8021 5030/8021 5030/8021 5030/8021 5030/8021 5030/8021 5030/8021	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02 0.3 0.2 0.4 0.4 0.2 0.3 0.2 0.6	0.5 1 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05	

NASJ-159-GH-28-01	1	Lead	3010/6010	mq/L 0	.003	0.005	1
NASJ-159-GH-28-01	1	Naphthalene	3510/8310	ug/L	0.2	0.5	1 .
NASJ-159-GH-28-01	1	Acenaphthylene	3510/8310	ug/L	0.1	1	1
NASJ-159-GH-28-01	1	1-Methylnaphthalene	3510/8310	ug/L	0.1	1	1
NASJ-159-GH-28-01	1	2-Methylnaphthalene	3510/8310	ug/L	0.2	1	1
NASJ-159-GH-28-01	1	Acenaphthene	3510/8310	ug/L	0.2	0.5	1
NASJ-159-GH-28-01	1	Fluorene	3510/8310	ug/L	0.04	0.1	1
NASJ-159-GH-28-01	1	Phenanthrene	3510/8310	ug/L	0.04	1	1
NASJ-159-GH-28-01	1	Anthracene	3510/8310	ug/L	0.03	0.05	
NASJ-159-GH-28-01	ĩ	Fluoranthene	3510/8310	ug/L	0.04	0.05	1
NASJ-159-GH-28-01	1	Pyrene	3510/8310	_			1
NASJ-159-GH-28-01	1	Benzo(a) anthracene	3510/8310	ug/L	0.04	0.05	1
NASJ-159-GH-28-01	1			ug/L	0.02	0.05	1
	1	Chrysene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-28-01	-	Benzo(b) fluoranthene	3510/8310	ug/L	0.06	0.1	1
NASJ-159-GH-28-01	1	Benzo(k)fluoranthene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-28-01	1	Benzo(a) pyrene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-28-01	1	Dibenzo(a,h)anthracene	3510/8310	ug/L	0.07	0.1	1
NASJ-159-GH-28-01	1	Benzo(g,h,i)perylene	3510/8310	ug/L	0.07	0.1	1
NASJ-159-GH-28-01	1	Indeno(1,2,3-cd)pyrene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-28-01	1	P-Terphenyl	3510/8310	8			1
NASJ-159-GH-28-01	1	Methyl tert-butyl ether	5030/8021	ug/L	0.3	2	1
NASJ-159-GH-28-01	1	Benzene	5030/8021	ug/L	0.2	1	1
NASJ-159-GH-28-01	1	Toluene	5030/8021	ug/L	0.4	1	1
NASJ-159-GH-28-01	1	Chlorobenzene	5030/8021	ug/L	0.4	1	1
NASJ-159-GH-28-01	. 1	Ethylbenzene	5030/8021	ug/L	0.2	1	1
NASJ-159-GH-28-01	1	m-Xylene & p-Xylene	5030/8021	ug/L	0.3	1	1
NASJ-159-GH-28-01	1	o-Xylene	5030/8021	ug/L	0.2	ī	1
NASJ-159-GH-28-01	1	1,3-Dichlorobenzene	5030/8021	ug/L	0.6	1	1
NASJ-159-GH-28-01	1	1,4-Dichlorobenzene	5030/8021	ug/L	0.4	1	1
NASJ-159-GH-28-01	1	1,2-Dichlorobenzene	5030/8021	ug/L	0.6	1	1
NASJ-159-GH-28-01	1	Bromofluorobenzene	5030/8021	ug/L	0.6	7	_
NASU-139-GR-28-01	-	Bromorradiopenzene	,5030/6021	*5			1
NASJ-159-GH-29-01	1	Lead	3010/6010	mg/L 0	. 003	0.005	1
NASJ-159-GH-29-01	1	Naphthalene	3510/8310	ug/L	0.2	0.005	
NASJ-159-GH-29-01	1	Acenaphthylene	3510/8310	ug/L	0.2	1	1
NASJ-159-GH-29-01	1	1-Methylnaphthalene			0.1	1	1
	1	2-Methylnaphthalene	3510/8310	ug/L	0.1	_	1
NASJ-159-GH-29-01	1	Acenaphthene	3510/8310	ug/L		1	1
NASJ-159-GH-29-01	1	-	3510/8310	ug/L	0.2	0.5	1
NASJ-159-GH-29-01		Fluorene	3510/8310	ug/L	0.04	0.1	1
NASJ-159-GH-29-01	1	Phenanthrene	3510/8310	ug/L	0.04	1	1
NASJ-159-GH-29-01	1	Anthracene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-29-01	1	Fluoranthene	3510/8310	ug/L	0.04	0.1	1
NASJ-159-GH-29-01	1	Pyrene	3510/8310	ug/L	0.04	0.05	1
NASJ-159-GH-29-01	1	Benzo(a)anthracene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-29-01	1	Chrysene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-29-01	1	Benzo(b) fluoranthene	3510/8310	ug/L	0.06	0.1	1
NASJ-159-GH-29-01	1	Benzo(k)fluoranthene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-29-01	1	Benzo(a)pyrene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-29-01	1	Dibenzo(a,h)anthracene	3510/8310	ug/L	0.07	0.1	1
NASJ-159-GH-29-01	1	Benzo(g,h,i)perylene	3510/8310	ug/L	0.07	0.1	1
NASJ-159-GH-29-01	1	Indeno(1,2,3-cd)pyrene	3510/8310	uq/L	0.02	0.05	1
NASJ-159-GH-29-01	1	P-Terphenyl	3510/8310				1
NASJ-159-GH-29-01	1	Methyl tert-butyl ether	5030/8021	ug/L	0.3	2	1
NASJ-159-GH-29-01	1	Benzene	5030/8021	ug/L	0.2	1	1
NASJ-159-GH-29-01				ug/L	0.4	1	1
	1	Toluene	503078021				
	1 1	Toluene Chlorobenzene	5030/8021 5030/8021				י
NASJ-159-GH-29-01	1	Chlorobenzene	5030/8021	ug/L	0.4	1	1
NASJ-159-GH-29-01 NASJ-159-GH-29-01	1 1	Chlorobenzene Ethylbenzene	5030/8021 5030/8021	ug/L ug/L	0.4 0.2	1 1	1
NASJ-159-GH-29-01 NASJ-159-GH-29-01 NASJ-159-GH-29-01	1 1 1	Chlorobenzene Ethylbenzene m-Xylene & p-Xylene	5030/8021 5030/8021 5030/8021	ug/L ug/L ug/L	0.4 0.2 0.3	1 1 1	1 1
NASJ-159-GH-29-01 NASJ-159-GH-29-01 NASJ-159-GH-29-01 NASJ-159-GH-29-01	1 1 1	Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene	5030/8021 5030/8021 5030/8021 5030/8021	ug/L ug/L ug/L ug/L	0.4 0.2 0.3 0.2	1 1 1	1 1 1
NASJ-159-GH-29-01 NASJ-159-GH-29-01 NASJ-159-GH-29-01 NASJ-159-GH-29-01 NASJ-159-GH-29-01	1 1 1 1	Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene 1,3-Dichlorobenzene	5030/8021 5030/8021 5030/8021 5030/8021 5030/8021	ug/L ug/L ug/L ug/L ug/L	0.4 0.2 0.3 0.2 0.6	1 1 1 1	1 1 1
NASJ-159-GH-29-01 NASJ-159-GH-29-01 NASJ-159-GH-29-01 NASJ-159-GH-29-01 NASJ-159-GH-29-01 NASJ-159-GH-29-01	1 1 1 1 1	Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	5030/8021 5030/8021 5030/8021 5030/8021 5030/8021 5030/8021	ug/L ug/L ug/L ug/L ug/L ug/L	0.4 0.2 0.3 0.2 0.6 0.4	1 1 1 1 1	1 1 1 1
NASJ-159-GH-29-01 NASJ-159-GH-29-01 NASJ-159-GH-29-01 NASJ-159-GH-29-01 NASJ-159-GH-29-01	1 1 1 1	Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene 1,3-Dichlorobenzene	5030/8021 5030/8021 5030/8021 5030/8021 5030/8021	ug/L ug/L ug/L ug/L ug/L	0.4 0.2 0.3 0.2 0.6	1 1 1 1	1 1 1

NASJ-159-GH-30-01	1	Lead	3010/6010	mg/L 0	.003	0.005	1
NASJ-159-GH-30-01	1	Naphthalene	3510/8310	ug/L	0.2	0.5	1
NASJ-159-GH-30-01	1	Acenaphthylene	3510/8310	ug/L	0.1	ı	1
NASJ-159-GH-30-01	1	1-Methylnaphthalene	3510/8310	ug/L	0.1	a	1
NASJ-159-GH-30-01	1	2-Methylnaphthalene	3510/8310	ug/L	0.2	ı	1
NASJ-159-GH-30-01	1	Acenaphthene	3510/8310	ug/L	0.2	0.5	1
NASJ-159-GH-30-01	1	Fluorene	3510/8310	ug/L	0.04	0.1	1
NASJ-159-GH-30-01	1	Phenanthrene	3510/8310	ug/L	0.04	a	1
NASJ-159-GH-30-01	1	Anthracene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-30-01	1	Fluoranthene	3510/8310	ug/L	0.04	0.03	1
NASJ-159-GH-30-01	1	Pyrene	3510/8310	ug/L	0.04	0.05	1
NASJ-159-GH-30-01	1	Benzo (a) anthracene	3510/8310	ug/L	0.02	0.05	
NASJ-159-GH-30-01	1	Chrysene	3510/8310		0.02		1
NASJ-159-GH-30-01	1	Benzo(b) fluoranthene		ug/L		0.05	1
NASJ-159-GH-30-01	1	Benzo(k) fluoranthene	3510/8310	ug/L	0.06	0.1	. 1
	1		3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-30-01		Benzo(a)pyrene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-30-01	1	Dibenzo(a,h)anthracene	3510/8310	ug/L	0.07	0.1	1
NASJ-159-GH-30-01	1 .	Benzo(g,h,i)perylene	3510/8310	ug/L	0.07	0.1	1
NASJ-159-GH-30-01	1	Indeno(1,2,3-cd)pyrene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-30-01	1	P-Terphenyl	3510/8310	*			1
NASJ-159-GH-30-01	1	Methyl tert-butyl ether	5030/8021	ug/L	0.3	2	1
NASJ-159-GH-30-01	1	Benzene	5030/8021	ug/L	0.2	1	1
NASJ-159-GH-30-01	1	Toluene	5030/8021	uq/L	0.4	1	1
NASJ-159-GH-30-01	1	Chlorobenzene	5030/8021	ug/L	0.4	1	1
NASJ-159-GH-30-01	1	Ethylbenzene	5030/8021	ug/L	0.2	1	1
NASJ-159-GH-30-01	1	m-Xylene & p-Xylene	5030/8021	ug/L	0.3	1	1
NASJ-159-GH-30-01	1	o-Xylene	5030/8021	ug/L	0.2	1	1
NASJ-159-GH-30-01	1	1,3-Dichlorobenzene	5030/8021	ug/L	0.6	1	_
NASJ-159-GH-30-01	1	1,4-Dichlorobenzene	5030/8021		0.4	1	1
	1	1,2-Dichlorobenzene	·	ug/L		_	1
NASJ-159-GH-30-01		The state of the s	5030/8021	ug/L	0.6	1	1
NASJ-159-GH-30-01	1	Bromofluorobenzene	5030/8021	8 .			1
			2220/522	/- -			
NASJ-159-GH-31-01	1	Lead	3010/6010	mg/L 0		0.005	1
NASJ-159-GH-31-01	1	Naphthalene	3510/8310	ug/L	0.2	0.5	1 1
NASJ-159-GH-31-01 NASJ-159-GH-31-01	1 1	Naphthalene Acenaphthylene	3510/8310 3510/8310	ug/L ug/L	0.2 0.1		
NASJ-159-GH-31-01	1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene	3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L	0.2 0.1 0.1	0.5	1
NASJ-159-GH-31-01 NASJ-159-GH-31-01	1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene	3510/8310 3510/8310	ug/L ug/L	0.2 0.1	0.5 1 1	1 1
NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01	1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene	3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L	0.2 0.1 0.1	0.5 1 1	1 1 1
NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01	1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene	3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2	0.5 1 1	1 1 1
NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01	1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2	0.5 1 1 1 0.5	1 1 1 1
NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01	1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2	0.5 1 1 1 0.5 0.1	1 1 1 1 1 1
NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01	1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04	0.5 1 1 0.5 0.1 1	1 1 1 1 1 1
NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01	1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03	0.5 1 1 0.5 0.1 1 0.05	1 1 1 1 1 1 1
NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01	1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04	0.5 1 1 0.5 0.1 1 0.05 0.1	1 1 1 1 1 1 1 1
NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.04	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01	1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.2 0.2 0.04 0.03 0.04 0.04 0.02 0.02	0.5 1 1 0.5 0.1 2 0.05 0.1 0.05 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02 0.02 0.06 0.03	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Pluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01 NASJ-159-GH-31-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.2 0.2 0.04 0.03 0.04 0.04 0.02 0.02 0.06 0.03 0.07	0.5 1 1 0.5 0.1 2 0.05 0.1 0.05 0.05 0.05 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-31-01 NASJ-159-GH-31-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Benzo(g, h, i) perylene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.2 0.2 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-31-01 NASJ-159-GH-31-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Dibenzo(a,h) aphracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.2 0.2 0.04 0.03 0.04 0.04 0.02 0.02 0.06 0.03 0.07	0.5 1 1 0.5 0.1 2 0.05 0.1 0.05 0.05 0.05 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-31-01 NASJ-159-GH-31-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Dibenzo(a,h) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.04 0.04 0.04 0.04 0.02 0.02 0.06 0.03 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-31-01 NASJ-159-GH-31-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Pluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(c) fluoranthene Benzo(c) h janthracene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.02 0.02 0.02 0.05 0.03 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-31-01 NASJ-159-GH-31-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Genzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.04 0.04 0.04 0.04 0.02 0.02 0.06 0.03 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-31-01 NASJ-159-GH-31-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Pluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(c) fluoranthene Benzo(c) h janthracene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.02 0.02 0.02 0.05 0.03 0.07 0.07	0.5 1 1 0.5 0.1 0.05 0.1 0.05 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-31-01 NASJ-159-GH-31-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Genzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.02 0.04 0.02 0.06 0.03 0.07 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	
NASJ-159-GH-31-01 NASJ-159-GH-31-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(c) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.06 0.03 0.07 0.07 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-31-01 NASJ-159-GH-31-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (b) fluoranthene Benzo (a) pyrene Dibenzo (a, h) anthracene Genzo (a, h) arthracene Fluoranthene Benzo (a, h) erylene Indeno (1, 2, 3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.04 0.04 0.04 0.02 0.06 0.03 0.07 0.07 0.07 0.02	0.5 1 1 0.5 0.1 0.05 0.1 0.05 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-31-01 NASJ-159-GH-31-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Enzo(g, h, i) perylene Indeno(1, 2, 3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07 0.07 0.02 0.3 0.4 0.04	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	
NASJ-159-GH-31-01 NASJ-159-GH-31-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(c) pyrene Dibenzo(a, h) anthracene Benzo(g, h, i) perylene Indeno(1, 2, 3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.04 0.04 0.04 0.02 0.06 0.03 0.07 0.07 0.07 0.07 0.02 0.04 0.04 0.03 0.04 0.04 0.03 0.04 0.04 0.04 0.05 0.06 0.03 0.04 0.04 0.05 0.06 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	
NASJ-159-GH-31-01 NASJ-159-GH-31-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(c) pyrene Dibenzo(a, h) anthracene Dibenzo(a, h) anthracene Eenzo(g, h, i) perylene Indeno(1, 2, 3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 1, 3-Dichlorobenzene	3510/8310 3510/8	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.04 0.04 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02 0.04 0.04	0.5 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.05 0.1 0.05	
NASJ-159-GH-31-01 NASJ-159-GH-31-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (c) fluoranthene Benzo (a) pyrene Dibenzo (a, h) anthracene Glezo (a, h) aprilene Indeno (1, 2, 3 - cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 0-Xylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	3510/8310 3510/8021 3530/8021 3530/8021 3530/8021 3530/8021 3530/8021 3530/8021 3530/8021 3530/8021 3530/8021 3530/8021 3530/8021 3530/8021	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02 0.3 0.2 0.4 0.4 0.2 0.3 0.2 0.4 0.4 0.4 0.2 0.3	0.5 1 1 0.5 0.1 0.05 0.1 0.05 0.05 0.05	
NASJ-159-GH-31-01 NASJ-159-GH-31-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(c) pyrene Dibenzo(a, h) anthracene Dibenzo(a, h) anthracene Eenzo(g, h, i) perylene Indeno(1, 2, 3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 1, 3-Dichlorobenzene	3510/8310 3510/8	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.06 0.03 0.07 0.07 0.02 0.3 0.2 0.4 0.4 0.2 0.3 0.2 0.6	0.5 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.05 0.1 0.05	

NASJ-159-GH-DUP1-01	1	Lead	3010/6010	mg/L 0.	003	0.005	1
NASJ-159-GH-DUP1-01	1	Naphthalene	3510/8310	ug/L	0.2	0.5	1
NASJ-159-GH-DUP1-01	1	Acenaphthylene	3510/8310	ug/L	0.1	1	1
NASJ-159-GH-DUP1-01	1	1-Methylnaphthalene	3510/8310	ug/L	0.1	1	1
NASJ-159-GH-DUP1-01	1	<pre>2-Methylnaphthalene</pre>	3510/8310	ug/L	0.2	1	1
NASJ-159-GH-DUP1-01	1	Acenaphthene	3510/8310	ug/L	0.2	0.5	1
NASJ-159-GH-DUP1-01	1	Fluorene	3510/8310	ug/L	0.04	0.1	1
NASJ-159-GH-DUP1-01	1	Phenanthrene	3510/8310	ug/L	0.04	ı	1
NASJ-159-GH-DUP1-01	1	Anthracene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-DUP1-01	1	Fluoranthene	3510/8310	ug/L	0.04	0.1	1
NASJ-159-GH-DUP1-01	1	Pyrene	3510/8310	ug/L	0.04	0.05	1
NASJ-159-GH-DUP1-01	1	Benzo(a)anthracene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-DUP1-01	1	Chrysene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-DUP1-01	1	Benzo(b) fluoranthene	3510/8310	ug/L	0.06	0.1	1
NASJ-159-GH-DUP1-01	1	Benzo(k) fluoranthene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-DUP1-01	1	Benzo (a) pyrene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-DUP1-01	1	Dibenzo(a,h)anthracene	3510/8310	ug/L	0.07	0.1	1
NASJ-159-GH-DUP1-01	1	Benzo(g,h,i)perylene	3510/8310	ug/L	0.07	0.1	1
NASJ-159-GH-DUP1-01	1	Indeno(1,2,3-cd)pyrene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-DUP1-01	1	P-Terphenyl	3510/8310	*			1
NASJ-159-GH-DUP1-01	1	Methyl tert-butyl ether	5030/8021	ug/L	0.3	2	1
NASJ-159-GH-DUP1-01	1	Benzene	5030/8021	ug/L	0.2	1	1
NASJ-159-GH-DUP1-01	1	Toluene	5030/8021	ug/L	0.4	1	1
NASJ-159-GH-DUP1-01	1	Chlorobenzene	5030/8021	ug/L	0.4	1	1
NASJ-159-GH-DUP1-01	1	Ethylbenzene	5030/8021	ug/L	0.2	1	1
NASJ-159-GH-DUP1-01	1	m-Xylene & p-Xylene	5030/8021	ug/L	0.3	1	1
NASJ-159-GH-DUP1-01	1	o-X y lene	5030/8021	ug/L	0.2	1	ı
NASJ-159-GH-DUP1-01	1	1,3-Dichlorobenzene	5030/8021	ug/L	0.6	1	1
NASJ-159-GH-DUP1-01	1	1,4-Dichlorobenzene	5030/8021	ug/L	0.4	ı	1
NASJ-159-GH-DUP1-01	1	1,2-Dichlorobenzene	5030/8021	ug/L	0.6	1	1
NASJ-159-GH-DUP1-01	1	Bromofluorobenzene	5030/8021	*			1
TRIPBLK	1	Methyl tert-butyl ether	5030/8021	ug/L	0.3	2	1
TRIPBLK	1	Benzene	5030/8021	ug/L	0.2	1	1
TRIPBLK	1	Toluene	5030/8021	ug/L	0.4	1	1
TRIPBLK	1	Chlorobenzene	5030/8021	ug/L	0.4	1	. 1
TRIPBLK	1	Ethylbenzene	5030/8021	ug/L	.0.2	1	1
TRIPBLK	1	m-Xylene & p-Xylene	5030/8021	ug/L	0.3	1	1
TRIPBLK	1	o-Xylene	5030/8021	ug/L	0.2	1	1
TRIPBLK	1	1,3-Dichlorobenzene	5030/8021	ug/L	0.6	1	1
TRIPBLK	1	1,4-Dichlorobenzene	5030/8021	ug/L	0.4	1	1
TRIPBLK	1	1,2-Dichlorobenzene	5030/8021	ug/L	0.6	1	1
TRIPBLK	1	Bromofluorobenzene	5030/8021	*			1

QSARF#<u>\$43943</u> Brade

ENVIRONMENTAL CONSERVATION LABORATORIES

4810 Executive Park Court, Suite 211 10207 General Drive Jacksonville, Florida 32216-6069 Orlando, Florida 32824

Ph. (904) 296-3007 • Fax (904) 296-6210 Ph. (407) 826-5314 • Fax (407) 850-6945

ENCO CompQAP No.: 960038G/0 CHAIN OF CUSTODY RECORD

PROJECT REFERENCE	PROJECT NO.	P.O. NUMBER								003101		
PROJECT REFERENCE NASTAX GAS HILL CTO ID! PROJECT LOC. SAMPLER(S) NAME (State)	NO255			MATRIX TYPE			REQL	JIRED ANALYS	IS	PAG	E	OF
FL MENVIN DAIL FOU	TAKKA FAXO	E 904281 0400 04281 0070 DAGER		Oil, Sobrant, OilC.)	///	6000 6000B					STAN REPO	DARD PRT /ERY
CLIENT NAME Tetratech Nus	SAM P	RATT /	/		(2)	0/18/	′ /		///	′ / 🗝	EVPENITER	REPORT
I CLIENT ADDRESS (CITY, STATE, ZIP)			8 Ki Ki Ki Ki Ki Ki Ki K		12/2	$\frac{3}{3}$	/	/ /	/ /	/ 山	EXPEDITED DELIVERY (surcharge)
JACKSONVILLE, FL 32	256				2/3/8	1/20/	///	/ /	/ /	/		
SAMPLE						1	 		 	Date Due		
STATION DATE TIME GRAB	COMP SAMPLE ID	ENTIFICATION S	MASTEWATER DRINKING WATER SOILSOLD/SEDIME.	AH AUROUS LIOUD SLUDGE OTHER	c 1 None	HNO2	RESER/A	S SUBMITTED		-/	REMARKS	
1 07/29/49 1108 /	NAST-15	9-GH-28-01 V			2 1	1				Coc#		43
2 07/29/99 U37 V	NAST-150	7-GH-31-01 V			2 1	1						,
3 07/29/99 1425 1		7-64-30-01 V		á	2 1	ī						
4 07/29/99 1429 1		9-GH-19-01 V		a	2 1	1				<u> </u>		
5 07/19/9 1605 V		7-GH-27-01 V				7					-	
6 07/29/49 16/5 V		7GH-26-01		<u>ל</u> ווו		1	-					
7 07 b9 kg 1750 V	NAS I-15	7-64-23-01 V	111		1	1					,	
8 17/29/99 1804 /	Vat Tic	9-GH-25-01 V			2 1	1						
27/20/00 2000 /	NAST-15	S CUL		-	× ('- 	+					
100		DUP1-01 /		Î	1							
10			+ + + -	Já			+					
11 07/28/99 /	TRIP E	scank		100	<u> </u>		+			 		-
12			$\bot \bot \bot \bot$									
13												
14					07/20/0	9			:			
SAMPLE KIT PREPARED BY: DIJACKSONVILLE DORLANDO	DATE TIME	RELINATUSHED BY: (SIGNA	1 1 /	7	7/30/07/29	TIME	RECEIVED B	Y: (SIGNATURE	E)		DATÉ	TIME
RELINQUISHED BY: (SIGNATURE)	DATE TIME	RECEIVED/BY: (SIGNATURE	1. Dal	<u>u</u>	DATE /	TIME T	RELINQUISH	IED BY: (SIGNA	TURE)		DATE	TIME
, ,		,	•					•	,			
RECEIVED BY (SIGNATURE)	DATE TIME	RELINQUISHED BY: (SIGNA	TURE)		DATE	TIME	RECEIVED B	Y: (SIGNATURE	≣)		DATE	TIME
DATE CONTROL ABORATORY BY: (SIGNATURE) DATE CONTROL OF CONTROL O	30PA 7UC	1 A	ICO LOG NO. TR 78 -	70	RRY S	PAGE	१ । ४०	o 471	645			

Environmental Conservation Laboratories, Inc.

4810 Executive Park Court, Suite 211 Jacksonville, Florida 32216-6069 904 / 296-3007 Fax 904 / 296-6210 www.encolabs.com

DHRS Certification No. E82277

CASE NARRATIVE

Date:

August 19, 1999

Client:

Tetra Tech NUS, Inc.

Project #:

N0255 / CTO101

Lab ID:

JR7876

Overview

All samples submitted were analyzed by Environmental Conservation Laboratories, Inc. in accordance with the methods referenced in the laboratory report. Any particular difficulties encountered during sample handling by Environmental Conservation Laboratories, Inc. will be discussed in the QC Remarks section below.

Nine aqueous samples and one trip blank were received on July 30, 1999 in good condition on wet ice. No discrepancies were noted between the Chain of Custody and the containers. Samples were analyzed for the parameters as listed on the Chain of Custody.

All samples were extracted and analyzed within method-specified holding times.

Quality Control Remarks

In the 8021 analysis of sample NASJ-159-GH-23-01, the surrogate recovery was unavailable due to matrix interference. As a result of these interferences, the sample was analyzed at a 1:5 dilution.

A positive result of 0.13 ug/L was obtained for pyrene in the 8310 preparatory blank. All samples associated with this blank were significantly below the Florida action level of 210 ug/L. Any positive result for this constituent in this batch of samples was flagged with a "V", the Florida Department of Environmental Protection's blank qualifier.

Other Comments

Quality assurance acceptance limits for surrogates, matrix spikes, matrix spike duplicates and laboratory control limits are established in-house based on historical data.

The analytical data presented in this report are consistent with the methods as referenced in the analytical report. Any exceptions or deviations are noted in the QC remarks section of this narrative. Should there be any questions regarding this package, please feel free to contact the undersigned for additional information.

Released By:

Environmental Conservation Laboratories, Inc.

Richard E. Camp, II Laboratory Manager

Environmental Conservation Laboratories, Inc.

4810 Executive Park Court, Suite 211 Jacksonville, Florida 32216-6069 904 / 296-3007 Fax 904 / 296-6210 www.encolabs.com

DHRS Certification No. E82277

CLIENT: Tetra Tech NUS, Inc.

ADDRESS: 661 Anderson Dr.

Foster Plaza 7

Pittsburg, PA 15220-2745

REPORT #

: JR7908

DATE SUBMITTED: July 31, 1999

DATE REPORTED : August 18, 1999

PAGE 1 OF 19

ATTENTION: Ms. Lee Leck

SAMPLE IDENTIFICATION

Samples submitted and identified by client as:

PROJECT #: NO255/CTO101

NAS JAX Gas Hill

07/30/99

#1	- NASJ-159-GH-24-01	@	10:10
#2	- NASJ-159-GH-14-01	@	10:24
#3	- NASJ-159-GH-21-01	@	11:48
#4	- NASJ-159-GH-01-01	@	12:20
#5	- NASJ-159-GH-15-01	@	15:05
#6	- NASJ-159-GH-22-01	@	15:43
#7	- NASJ-159-GH-12-01	@	17:12

PROJECT MANAGER Scott D. Martin

REPORT # : JR7908

DATE REPORTED: August 18, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 2 OF 19

RESULTS OF ANALYSIS

EPA METHOD 5030/8021 -.

VOLATILE ORGANICS		NASJ-159-GH-24-01	<u>Units</u>
Methyl tert-butyl Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xyle o-Xylene 1,3-Dichlorobenze 1,4-Dichlorobenze 1,2-Dichlorobenze	ne ne ne	3.5 1.0 U 1.0 U 1.0 U 3.2 2.1 1.0 U 1.0 U 1.0 U	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L
Surrogate (Bromof Surrogate Expecte Surrogate Reporte Surrogate Percent Surrogate Control Date Analyzed	d Value d Value Recovery	50 48 96 65-129 08/01/99	μg/L μg/L % %
TOTAL METALS	METHOD	NASJ-159-GH-24-01	<u>Units</u>
Lead Date Analyzed	3010/6010b	0.0050 U 08/02/99	mg/L

REPORT # : JR7908

DATE REPORTED: August 18, 1999 REFERENCE : NO255/CTO101 PROJECT NAME : NAS JAX Gas Hill

PAGE 3 OF 19

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-24-01	<u>Units</u>
Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene	0.90 1.0 U 1.0 U 1.0 U 0.50 U 0.10 U 1.0 U 0.050 U 0.10 U 0.050 U 0.050 U 0.050 U 0.050 U 0.10 U 0.10 U 0.050 U 0.10 U 0.050 U 0.10 U 0.050 U	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L
Surrogate (p-terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limit Date Extracted Date Analyzed	10.0 9.8 98 39-148 08/04/99 08/09/99	μg/L μg/L % %

REPORT # : JR7908

DATE REPORTED: August 18, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 4 OF 19

08/03/99

RESULTS OF ANALYSIS

EPA METHOD 5030/8021 -

Date Analyzed

VOLATILE ORGANICS		NASJ-159-GH-	14-01	<u>Units</u>
Methyl tert-butyl eth Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	ner	40 U 270 20 U 20 U 20 U 20 U 20 U 20 U 20 U 20	D1 D1 D1 D1 D1 D1 D1 D1 D1	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L
Surrogate (Bromofluor Surrogate Expected Va Surrogate Reported Va Surrogate Percent Rec Surrogate Control Lim Date Analyzed	llue llue covery	50 46 92 65-129 08/02/99		μg/L μg/L % %
TOTAL METALS M	<u>IETHOD</u>	NASJ-159-GH-	<u>14-01</u>	<u>Units</u>
Lead 301	.0/6010b	0.0050 U		mg/L

U = Compound was analyzed for but not detected to the level shown. D1 = Analyte value determined from a 1:20 dilution.

REPORT # : JR7908

DATE REPORTED: August 18, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 5 OF 19

RESULTS OF ANALYSIS

EPA METHOD 3510/8310 -

HIA MHINOD SSIO/ 0510		
PAH BY HPLC	NASJ-159-GH-14-01	<u>Units</u>
Naphthalene	0.90	μg/L
Acenaphthylene	1.0 U	$\mu exttt{g}/ exttt{L}$
1-Methylnaphthalene	1.0 U	$\mu { m g}/{ m L}$
2-Methylnaphthalene	1.0 U	μg/L
Acenaphthene	0.50 U	$\mu { t g}/{ t L}$
Fluorene	0.10 U	$\mu { m g}/{ m L}$
Phenanthrene	1.0 U	$\mu { t g}/{ t L}$
Anthracene	0.050 U	$\mu { t g}/{ t L}$
Fluoranthene	0.10 U	μg/L
Pyrene	0.17	$\mu { m g}/{ m L}$
Benzo(a)anthracene	0.050 U	μg/L
Chrysene	0.050 U	μg/L
Benzo(b)fluoranthene	0.10 U	μ g/L
Benzo(k)fluoranthene	0.050 U	$\mu { t g}/{ t L}$
Benzo(a)pyrene	0.050 U	μ g/L
Dibenzo(a,h) anthracene	0.10 U	μ g/L
Benzo(g,h,i)perylene	0.10 U	μ g/L
Indeno(1,2,3-cd)pyrene	0.050 U	μ g/L
Surrogate (p-terphenyl)		
Surrogate Expected Value	10.0	μ g/L
Surrogate Reported Value	8.7	μ g/L
Surrogate Percent Recovery	87	%
Surrogate Control Limit	39-148	%
Date Extracted	08/05/99	
Date Analyzed	08/10/99	

REPORT # : JR7908

DATE REPORTED: August 18, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 6 OF 19

RESULTS OF ANALYSIS

EPA METHOD 5030/8021 -

VOLATILE ORGANICS	NASJ-159-GH-21-01	<u>Units</u>
Methyl tert-butyl ether	2.0 U	μg/L
Benzene	1.0 U	μg/L
Toluene	1.0 U	μg/L
Chlorobenzene	1.0 U	μg/L
Ethylbenzene	1.0 U	μg/L
m-Xylene & p-Xylene	1.0 U	μg/L
o-Xylene	1.0 U	μg/L
1,3-Dichlorobenzene	1.0 U	μg/L
1,4-Dichlorobenzene	1.0 U	μg/L
1,2-Dichlorobenzene	1.0 U	μg/L
Surrogate (Bromofluorobenzene)		
Surrogate Expected Value	50	μg/L
Surrogate Reported Value	47	μg/L
Surrogate Percent Recovery	94	%
Surrogate Control Limits	65-129	%
Date Analyzed	08/02/99	·
	•	
TOTAL METALS METHOD	NASJ-159-GH-21-01	<u>Units</u>
Lead 3010/6010b Date Analyzed	0.0050 U 08/03/99	mg/L

 $^{{\}tt U} = {\tt Compound}$ was analyzed for but not detected to the level shown.

REPORT # : JR7908

DATE REPORTED: August 18, 1999
REFERENCE : NO255/CTO101
PROJECT NAME : NAS JAX Gas Hill

PAGE 7 OF 19

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-21-01	<u>Units</u>
Naphthalene	0.50 U	μg/L
Acenaphthylene	1.0 U	$\mu g/L$
1-Methylnaphthalene	1.0 U	μg/L
2-Methylnaphthalene	1.0 U	μg/L
Acenaphthene	0.50 U	$\mu { m g}/{ m L}$
Fluorene	0.10 U	μg/L
Phenanthrene	1.0 U	$\mu { t g}/{ t L}$
Anthracene	0.050 U	$\mu { m g}/{ m L}$
Fluoranthene	0.10 U	μg/L
Pyrene	0.050 U	$\mu { m g}/{ m L}$
Benzo(a)anthracene	0.050 U	μg/L
Chrysene	0.050 U	$\mu g/L$
Benzo(b)fluoranthene	0.10 U	$\mu { m g}/{ m L}$
Benzo(k)fluoranthene	0.050 U	$\mu extsf{g}/ extsf{L}$
Benzo(a)pyrene	0.050 U	$\mu { m g}/{ m L}$
Dibenzo(a,h)anthracene	0.10 U	$\mu { m g}/{ m L}$
Benzo(g,h,i)perylene	0.10 U	μg/L
Indeno(1,2,3-cd)pyrene	0.050 U	$\mu g/L$
Surrogate (p-terphenyl)		
Surrogate Expected Value	10.0	μg/L
Surrogate Reported Value	9.7	μg/L
Surrogate Percent Recovery	99	8
Surrogate Control Limit	39-148	%
Date Extracted	08/04/99	
Date Analyzed	08/10/99	

REPORT # : JR7908

DATE REPORTED: August 18, 1999
REFERENCE : NO255/CTO101
PROJECT NAME : NAS JAX Gas Hill

PAGE 8 OF 19

RESULTS OF ANALYSIS

EPA METHOD 5030/8021 -

VOLATILE ORGANIC	<u>CS</u>	NASJ-159-GH-	01-01	<u>Units</u>
Methyl tert-buty Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylo-Xylene 1,3-Dichlorobenz 1,4-Dichlorobenz 1,2-Dichlorobenz	lene zene zene	20 U 130 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10	D2 D2 D2 D2	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L
Surrogate (Brome Surrogate Expect Surrogate Report Surrogate Percer Surrogate Contro Date Analyzed	ced Value ced Value nt Recovery	50 47.5 95 65-129 08/02/99		μg/L μg/L % %
TOTAL METALS	METHOD	NASJ-159-GH-	01-01	<u>Units</u>
Lead Date Analyzed	3010/6010b	0.0050 U 08/03/9		mg/L

U = Compound was analyzed for but not detected to the level shown. D2 = Analyte value determined from a 1:10 dilution.

REPORT # : JR7908

DATE REPORTED: August 18, 1999 REFERENCE : NO255/CTO101 PROJECT NAME : NAS JAX Gas Hill

PAGE 9 OF 19

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-01-01	<u>Units</u>
Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene	0.70 I 1.0 U 1.0 U 1.0 U 0.50 U 0.10 U 1.0 U 0.050 U 0.10 U 0.050 U 0.050 U 0.050 U 0.10 U 0.050 U 0.10 U 0.050 U 0.10 U 0.050 U 0.10 U 0.050 U	μμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμ
Surrogate (p-terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limit Date Extracted Date Analyzed	10.0 8.9 89 39-148 08/04/99 08/10/99	μg/L μg/L %

U = Compound was analyzed for but not detected to the level shown.
I = Analyte detected; value is between the Method Detection Level (MDL)
 and the Practical Quantitation Level (PQL).

REPORT # : JR7908

DATE REPORTED: August 18, 1999 REFERENCE: NO255/CTO101 PROJECT NAME: NAS JAX Gas Hill

PAGE 10 OF 19

RESULTS OF ANALYSIS

EPA METHOD 5030/8021 -

VOLATILE ORGANICS	NASJ-159-GH-15-01	<u>Units</u>
Methyl tert-butyl ether	40 U D1	μg/L
Benzene	260 D1	μg/L
Toluene	20 U D1	$\mu { m g}/{ m L}$
Chlorobenzene	20 U D1	$\mu { m g}/{ m L}$
Ethylbenzene	20 U D1	$\mu {\sf g}/{\sf L}$
m-Xylene & p-Xylene	20 U D1	μ g/L
o-Xylene	20 U D1	μ g/L
1,3-Dichlorobenzene	20 U D1	$\mu { t g}/{ t L}$
1,4-Dichlorobenzene	20 U D1	μ g/L
1,2-Dichlorobenzene	20 U D1	$\mu { t g}/{ t L}$
Surrogate (Bromofluorobenzene)		
Surrogate Expected Value	50	$\mu g/L$
Surrogate Reported Value	45.5	μg/L
Surrogate Percent Recovery	91	%
Surrogate Control Limits	65-129	%
Date Analyzed	08/02/99	
•		
TOTAL METALS METHOD	NASJ-159-GH-15-01	<u>Units</u>
Lead 3010/6010b	0.0050 U	mg/L
Date Analyzed	08/03/99	٥,

U = Compound was analyzed for but not detected to the level shown. D1 = Analyte value determined from a 1:20 dilution.

REPORT # : JR7908

DATE REPORTED: August 18, 1999
REFERENCE: NO255/CT0101
PROJECT NAME: NAS JAX Gas Hill

PAGE 11 OF 19

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-15-01	<u>Units</u>
Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene	1.7 1.0 U 1.0 U 1.0 U 0.50 U 0.10 U 1.0 U 0.050 U 0.050 U 0.050 U 0.050 U 0.10 U 0.050 U 0.10 U 0.050 U	μα/Γ μα/Γ μα/Γ μα/Γ μα/Γ μα/Γ μα/Γ μα/Γ
Surrogate (p-terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limit Date Extracted Date Analyzed	10.0 8.3 83 39-148 08/04/99 08/10/99	µg/L µg/L %

REPORT # : JR7908

DATE REPORTED: August 18, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 12 OF 19

EPA METHOD 5030	•	NAGT 150 GT 00 01	
VOLATILE ORGANI	. <u></u>	NASJ-159-GH-22-01	<u>Units</u>
Methyl tert-but	yl ether	2.0	μg/L
Benzene		1.2	$\mu \mathrm{g}/\mathrm{L}$
Toluene		1.0 U	$\mu { m g}/{ m L}$
Chlorobenzene		1.0 U	$\mu { t g}/{ t L}$
Ethylbenzene	٦	1.0 U	$\mu { t g}/{ t L}$
m-Xylene & p-Xy	Tene	1.0 U	μ g/L
o-Xylene		1.0 U	μg/L
1,3-Dichloroben 1,4-Dichloroben		1.0 U	μg/L
1,2-Dichloroben		1.0 U 1.0 U	μg/L
I, Z DICHIOLODEH	.26116	1.0 0	μ g/L
Surrogate (Brom	ofluorobenzene)		
Surrogate Expec	ted Value	50	μg/L
Surrogate Repor		47	μg/L
Surrogate Perce		94	00 00
Surrogate Contr	ol Limits	65-129	%
Date Analyzed	•	08/02/99	
•			
•			
TOTAL METALS	METHOD	NASJ-159-GH-22-01	<u>Units</u>
Lead	3010/6010b	0.0050 Ü	mg/L
Date Analyzed	,	08/03/99	5/ 1

REPORT # : JR7908

DATE REPORTED: August 18, 1999 REFERENCE : NO255/CTO101
PROJECT NAME : NAS JAX Gas Hill

PAGE 13 OF 19

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-22-01	<u>Units</u>
Naphthalene	0.50 U	μg/L
Acenaphthylene	1.0 U	μ g/L
1-Methylnaphthalene	1.0 U	$\mu g/L$.
2-Methylnaphthalene	1.0 U	μg/L
Acenaphthene Fluorene	0.50 U	μ g/L
	0.11 I	μ g/L
Phenanthrene	1.0 U	μ g/L
Anthracene Fluoranthene	0.050 U	μ g/L
	0.10 U	μ g/L
Pyrene	0.050 U	μ g/L
Benzo(a) anthracene	0.050 U	μ g/L
Chrysene	0.050 U	μ g/L
Benzo(b) fluoranthene	0.10 U	μ g/L
Benzo(k) fluoranthene	0.050 U	μ g/L
Benzo(a) pyrene	0.050 U	$\mu g/L$
Dibenzo(a, h) anthracene	0.10 U	$\mu g/L$
Benzo(g,h,i)perylene	0.10 U	$\mu g/L$
Indeno(1,2,3-cd)pyrene	0.050 Ŭ	$\mu exttt{g/L}$
Surrogate (p-terphenyl)		
Surrogate Expected Value	10.0	$\mu exttt{g/L}$
Surrogate Reported Value	8.6	μ g/L
Surrogate Percent Recovery	8.6	8
Surrogate Control Limit	39-148	%
Date Extracted	08/04/99	
Date Analyzed	08/10/99	

U = Compound was analyzed for but not detected to the level shown.
I = Analyte detected; value is between the Method Detection Level (MDL)
 and the Practical Quantitation Level (PQL).

REPORT # : JR7908

DATE REPORTED: August 18, 1999 REFERENCE: NO255/CTO101 PROJECT NAME: NAS JAX Gas Hill

PAGE 14 OF 19

RESULTS OF ANALYSIS

EPA METHOD 5030/8021 -

VOLATILE ORGANIC	<u>s</u>	NASJ-159-GH-12-01	<u>Units</u>
Methyl tert-buty Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xyl o-Xylene 1,3-Dichlorobenz 1,4-Dichlorobenz 1,2-Dichlorobenz	ene ene ene	2.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L
Surrogate (Bromo Surrogate Expect Surrogate Report Surrogate Percen Surrogate Contro Date Analyzed	ed Value ed Value t Recovery	50 48.5 97 65-129 08/01/99	μg/L μg/L % %
TOTAL METALS	<u>METHOD</u>	NASJ-159-GH-12-01	<u>Units</u>
Lead Date Analyzed	3010/6010b	0.0050 U 08/03/99	mg/L

 $^{{\}tt U}={\tt Compound}$ was analyzed for but not detected to the level shown.

REPORT # : JR7908

DATE REPORTED: August 18, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 15 OF 19

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-12-01	<u>Units</u>
Naphthalene	0.50 U	μg/L
Acenaphthylene	1.0 U	μg/L
1-Methylnaphthalene	1.0 U	μg/L
2-Methylnaphthalene	1.0 U	μg/L
Acenaphthene	0.50 U	μg/L
Fluorene	0.10 U	μg/L
Phenanthrene	1.0 U	$\mu { m g}/{ m L}$
Anthracene	0.050 U	$\mu { m g}/{ m L}$
Fluoranthene	0.10 U	$\mu { m g}/{ m L}$
Pyrene	0.050 U	$\mu { m g}/{ m L}$
Benzo(a)anthracene	0.050 U	$\mu { m g/L}$
Chrysene	0.050 U	$\mu { m g}/{ m L}$
Benzo(b)fluoranthene	0.10 U	$\mu g/L$
Benzo(k)fluoranthene	0.050 U	$\mu { m g/L}$
Benzo(a)pyrene	0.050 U	$\mu { m g}/{ m L}$
Dibenzo(a,h)anthracene	0.10 U	μg/L
Benzo(g,h,i)perylene	0.10 U	μ g/L
Indeno(1,2,3-cd)pyrene	0.050 U	μ g/L
Surrogate (p-terphenyl)		
Surrogate Expected Value	10.0	μ g/L
Surrogate Reported Value	9.0	μ g/L
Surrogate Percent Recovery	90	٥/٥ م
Surrogate Control Limit	39-148	%
Date Extracted	08/04/99	
Date Analyzed	08/10/99	

REPORT # : JR7908

DATE REPORTED: August 18, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 16 OF 19

EPA METHOD 5030	/8021 -		
VOLATILE ORGANI	t e e e e e e e e e e e e e e e e e e e	<u>LAB BLANK</u>	<u>Units</u>
Methyl tert-but	yl ether	2.0 U	μg/L
Benzene		1.0 U	$\mu { m g}/{ m L}$
Toluene	•	1.0 U	μg/L
Chlorobenzene		1.0 U	μg/L
Ethylbenzene		1.0 U	μg/L
m-Xylene & p-Xy	lene	1.0 U	μg/L
o-Xylene	•	1.0 U	$\mu { m g}/{ m L}$
1,3-Dichloroben	zene	1.0 U	μg/L
1,4-Dichloroben	zene	1.0 U	$\mu { m g}/{ m L}$
1,2-Dichloroben	zene	1.0 U	μg/L
Surrogate (Brome			
Surrogate Expec		50	μg/L
Surrogate Repor	ted Value	46.5	μg/L
Surrogate Perce		93	. olo olo
Surrogate Contro	ol Limits	65-129	8
Date Analyzed		08/01/99	
TOTAL METALS	METHOD	LAB BLANK	<u>Units</u>
Lead	3010/6010b	0.0050 U	mg/L
Date Analyzed		08/02/99	

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR7908

DATE REPORTED: August 18, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 17 OF 19

EPA METHOD 3510/8310 - PAH BY HPLC	LAB BLANK	<u>Units</u>
Naphthalene	0.50 U	μg/L
Acenaphthylene	1.0 U	μg/L
1-Methylnaphthalene	1.0 U	μg/L
2-Methylnaphthalene	1.0 U	μg/L
Acenaphthene	0.50 U	$\mu g/L$
Fluorene	0.10 U	μg/L
Phenanthrene	1.0 U	$\mu { m g}/{ m L}$
Anthracene	0.050 U	μg/L
Fluoranthene	0.10 U	$\mu { m g}/{ m L}$
Pyrene	0.050 U	μg/L
Benzo(a)anthracene	0.050 U	$\mu extsf{g}/ extsf{L}$
Chrysene	0.050 U	μ g/L
Benzo(b)fluoranthene	0.10 U	μ g/L
Benzo(k)fluoranthene	0.050 U	$\mu extsf{g}/ extsf{L}$
Benzo(a)pyrene	0.050 U	$\mu extsf{g}/ extsf{L}$
Dibenzo(a,h)anthracene	0.10 U	$\mu { t g}/{ t L}$
Benzo(g,h,i)perylene	0.10 U	μ g/L
Indeno(1,2,3-cd)pyrene	0.050 U	μ g/L
- 1 1	·	
Surrogate (p-terphenyl)	10.0	/+
Surrogate Expected Value	10.0	μg/L
Surrogate Reported Value	9.8	μg/L
Surrogate Percent Recovery	98	o\o .o\o
Surrogate Control Limit	39-148 08/04/99	₹
Date Extracted	• •	
Date Analyzed	08/09/99	

REPORT # : JR7908

DATE REPORTED: August 18, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 18 OF 19

EPA METHOD 5030/8021 -		
VOLATILE ORGANICS	<u>LAB</u> <u>BLANK</u>	<u>Units</u>
Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	2.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L
1,2-Dichlorobenzene	1.0 U	μ g/L
<u>Surrogate</u> (Bromofluorobenzene) Surrogate Expected Value	50	μg/L
Surrogate Reported Value	43	$\mu { m g}/{ m L}$
Surrogate Percent Recovery Surrogate Control Limits Date Analyzed	86 65-129 08/02/99	00000
Date Allaryzed	00/02/99	

REPORT # : JR7908

DATE REPORTED: August 18, 1999
REFERENCE : NO255/CTO101
PROJECT NAME : NAS JAX Gas Hill

PAGE 19 OF 19

QUALITY CONTROL DATA

		LCS			
Parameter	% RECOVERY MS/MSD/LCS	TARGET mg/L	ACCEPT <u>LIMITS</u>	% RPD <u>MS/MSD</u>	ACCEPT <u>LIMITS</u>
EPA Method 602/6230D/8020/8	021				
Benzene	*/ */102	20	60-138	*	17
Toluene	112/111/104	2.0	57-138	<1	16
Ethylbenzene	114/116/110	20	49-144	2	17
o-Xylene	102/102/103	20	50-151	<1	17
EPA Method 8310					٠.
Naphthalene	100/ 84/ 79	10	22-130	17	20
Acenaphthene	74/ 69/ 78	10	14-163	7	19
Benzo(a)pyrene	100/100/ 86	1	33-137	<1	36
Benzo(g,h,i)perylene	72/ 67/ 93	2	36-135	7	34
<u>Total</u> <u>Metals</u>					
Lead, 3010/6010b	100/ 99/100	1	68-126	1	19

NOTE: LCS target units for Pb LCS are mg/L.

Environmental Conservation Laboratories Comprehensive QA Plan #960038

- * = MS/MSD/RPD unavailable due to high original sample concentration.
- < = Less Than</pre>
- MS = Matrix Spike
- MSD = Matrix Spike Duplicate
- LCS = Laboratory Control Standard
- RPD = Relative Percent Difference

This report shall not be reproduced except in full, without the written approval of the laboratory. Results for these procedures apply only to the samples as submitted.

sample_no	run_number	parameter	method	units	idl	mdl	crdl crgl	dil_factor	pct moist
NASJ-159-GH-01-01	1	Lead	3010/6010	mg/L	0.003		0.005	1	F
NASJ-159-GH-01-01	1	Naphthalene	3510/8310	ug/L		0.2	0.5	1	
NASJ-159-GH-01-01	1	Acenaphthylene	3510/8310	ug/L		0.1	1	1	
NASJ-159-GH-01-01	1	1-Methylnaphthalene	3510/8310	ug/L		0.1	1	1	
NASJ-159-GH-01-01	1	2-Methylnaphthalene	3510/8310	ug/L		0.2	1	1	
NASJ-159-GH-01-01	1	Acenaphthene	3510/8310	ug/L		0.2	0.5	1	
NASJ-159-GH-01-01	1	Fluorene	3510/8310	ug/L		0.04	0.1	1	
NASJ-159-GH-01-01	1	Phenanthrene	3510/8310	ug/L		0.04	1	1	
NASJ-159-GH-01-01	1	Anthracene	3510/8310	ug/L		0.03	0.05	1	
NASJ-159-GH-01-01	1	Fluoranthene	3510/8310	ug/L		0.04	0.1	1	
NASJ-159-GH-01-01	1	Pyrene	3510/8310	ug/L		0.04	0.05	1	
NASJ-159-GH-01-01	1	Benzo(a) anthracene	3510/8310	ug/L		0.02	0.05	1	
NASJ-159-GH-01-01	1	Chrysene	3510/8310	ug/L		0.02	0.05	1	
NASJ-159-GH-01-01	1	Benzo(b)fluoranthene	3510/8310	ug/L		0.06	0.1	1	
NASJ-159-GH-01-01	1	Benzo(k)fluoranthene	3510/8310	ug/L		0.03	0.05	1	
NASJ-159-GH-01-01	1	Benzo(a)pyrene	3510/8310	ug/L		0.03	0.05	1	
NASJ-159-GH-01-01	1	Dibenzo(a,h)anthracene	3510/8310			0.07	0.1	1	
NASJ-159-GH-01-01	1	Benzo(g,h,i)perylene	3510/8310			0.07	0.1	1	
NASJ-159-GH-01-01	1	Indeno(1,2,3-cd)pyrene	3510/8310	\mathtt{ug}/\mathtt{L}		0.02	0.05	1	
NASJ-159-GH-01-01	1	P-Terphenyl	3510/8310	*				1	
NASJ-159-GH-01-01	1	Methyl tert-butyl ether				3	20	10	
NASJ-159-GH-01-01	1	Benzene	5030/8021			2	10	10	
NASJ-159-GH-01-01	1	Toluene	5030/8021			. 4	10	10	
NASJ-159-GH-01-01	1	Chlorobenzene	5030/8021			4	10	10	•
NASJ-159-GH-01-01	1	Ethylbenzene	5030/8021			2	10	10	
NASJ-159-GH-01-01	1	m-Xylene & p-Xylene	5030/8021	·		3	10	10	
NASJ-159-GH-01-01	1	o-Xylene	5030/8021			2	10	10	
NASJ-159-GH-01-01	1	1,3-Dichlorobenzene	5030/8021			6	10	10	
NASJ-159-GH-01-01	1	1,4-Dichlorobenzene	5030/8021			4	10	10	
NASJ-159-GH-01-01	1	1,2-Dichlorobenzene	5030/8021			6	10	10	
NASJ-159-GH-01-01	1	Bromofluorobenzene	5030/8021	*				10	
NASJ-159-GH-12-01	1	Lead	3010/6010	mg/L	0.003		0.005	1	
NASJ-159-GH-12-01	1	Naphthalene	3510/8310			0.2	0.5	1	
NASJ-159-GH-12-01	1	Acenaphthylene	3510/8310			0.1	1	1	•
NASJ-159-GH-12-01	1	1-Methylnaphthalene	3510/8310			0.1	1	1	
NASJ-159-GH-12-01	1	2-Methylnaphthalene	3510/8310			0.2	1	1	
NASJ-159-GH-12-01	1	Acenaphthene	3510/8310	- · .		0.2	0.5	1 .	
NASJ-159-GH-12-01	1	Fluorene	3510/8310			0.04	0.1	1	
NASJ-159-GH-12-01	1	Phenanthrene	3510/8310	ug/L		0.04	1	1	
NASJ-159-GH-12-01	1	Anthracene	3510/8310	ug/L		0.03	0.05	1.	
NASJ-159-GH-12-01	1	Fluoranthene	3510/8310			0.04	0.1	1	
NASJ-159-GH-12-01	1	Pyrene	3510/8310	ug/L		0.04	0.05	1	
NASJ-159-GH-12-01	1	Benzo (a) anthracene	3510/8310	ug/L		0.02	0.05	1	
NASJ-159-GH-12-01	1	Chrysene	3510/8310	ug/L		0.02	0.05	1	
NASJ-159-GH-12-01	1	Benzo(b)fluoranthene	3510/8310	ug/L		0.06	0.1	1	
NASJ-159-GH-12-01	1	Benzo(k) fluoranthene	3510/8310	ug/L		0.03	0.05	1	
NASJ-159-GH-12-01	1	Benzo(a)pyrene	3510/8310	ug/L		0.03	. 0.05	1	
NASJ-159-GH-12-01	1	Dibenzo(a,h)anthracene	3510/8310	ug/L		0.07	0.1	. 1	
NASJ-159-GH-12-01	1	Benzo(g,h,i)perylene	3510/8310	ug/L		0.07	0.1	1	
NASJ-159-GH-12-01	1	Indeno(1,2,3-cd)pyrene	3510/8310	ug/L		0.02	0.05	1	
NASJ-159-GH-12-01	1	P-Terphenyl	3510/8310	*				1	
NASJ-159-GH-12-01	1	Methyl tert-butyl ether	5030/8021	ug/L		0.3	2	1	
NASJ-159-GH-12-01	1	Benzene	5030/8021	ug/L		0.2	1	1	
NASJ-159-GH-12-01	1	Toluene	5030/8021	ug/L		0.4	1	1	
NASJ-159-GH-12-01	1	Chlorobenzene	5030/8021	ug/L		0.4	1	1	
NASJ-159-GH-12-01	1	Ethylbenzene	5030/8021	ug/L		0.2	1	1	
NASJ-159-GH-12-01	1	m-Xylene & p-Xylene	5030/8021	ug/L		0.3	1	1	
NASJ-159-GH-12-01	1	o-Xylene	5030/8021			0.2	1	1	
NASJ-159-GH-12-01	1	1,3-Dichlorobenzene	5030/8021	ug/L		0.6	1	1	
NASJ-159-GH-12-01	1	1,4-Dichlorobenzene	5030/8021			0.4	1	1	
NASJ-159-GH-12-01	1 .	1,2-Dichlorobenzene	5030/8021			0.6	1	1	
NASJ-159-GH-12-01	1	Bromofluorobenzene	5030/8021	ક્ષ				1	

NASJ-159-GH-14-01	1	Lead	3010/6010	m~ /T	0.003	0 005	
NASJ-159-GH-14-01	1	Naphthalene	3510/8310	ug/L		0.005	1
	1	Acenaphthylene	3510/8310	ug/L	0.2 0.1	0.5	1
NASJ-159-GH-14-01	1	1-Methylnaphthalene	•			1	1
NASJ-159-GH-14-01			3510/8310	ug/L	0.1	1	1
NASJ-159-GH-14-01	1	2-Methylnaphthalene	3510/8310	ug/L	0.2	1	1
NASJ-159-GH-14-01	1	Acenaphthene	3510/8310	ug/L	0.2	0.5	1
NASJ-159-GH-14-01	1	Fluorene	3510/8310	ug/L	0.04	0.1	1
NASJ-159-GH-14-01	1	Phenanthrene	3510/8310	ug/L	0.04	1	1
NASJ-159-GH-14-01	1	Anthracene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-14-01	1	Fluoranthene	3510/8310	ug/L	0.04	0.1	1
NASJ-159-GH-14-01	1	Pyrene	3510/8310	ug/L	0.04	0.05	1
NASJ-159-GH-14-01	1	Benzo(a)anthracene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-14-01	1	Chrysene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-14-01	1	Benzo(b)fluoranthene	3510/8310	ug/L	0.06	0.1	1
NASJ-159-GH-14-01	1	Benzo(k)fluoranthene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-14-01	1	Benzo(a)pyrene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-14-01	1	Dibenzo(a,h)anthracene	3510/8310	ug/L	0.07	0.1	1
NASJ-159-GH-14-01	1	Benzo(g,h,i)perylene	3510/8310	ug/L	0.07	0.1	1
NASJ-159-GH-14-01	1	Indeno(1,2,3-cd)pyrene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-14-01	1	P-Terphenyl	3510/8310	8			1
NASJ-159-GH-14-01	1	Methyl tert-butyl ether		ug/L	6	40	20
NASJ-159-GH-14-01	1	Benzene	5030/8021	ug/L	4	20	20
NASJ-159-GH-14-01	1	Toluene	5030/8021	ug/L	8	20	20
NASJ-159-GH-14-01	1	Chlorobenzene	5030/8021	uq/L	8	20	20
NASJ-159-GH-14-01	1	Ethylbenzene	5030/8021	ug/L	4	20	20
NASJ-159-GH-14-01	1	m-Xylene & p-Xylene	5030/8021	ug/L	6	20	20
NASJ-159-GH-14-01	1	o-Xylene	5030/8021	ug/L	4	20	20
	1	1,3-Dichlorobenzene	5030/8021	ug/L	12	20	20
NASJ-159-GH-14-01	1	1,4-Dichlorobenzene	5030/8021	ug/L	8	20	
NASJ-159-GH-14-01		1,2-Dichlorobenzene	5030/8021	ug/L		20	20
NASJ-159-GH-14-01	1	•	•	ug/ь %	12	20	20
NASJ-159-GH-14-01	1	Bromofluorobenzene	5030/8021	*5			20
N707 450 GU 45 01		Load	2010/6010	mc /T	0.003	0 005	1
NASJ-159-GH-15-01	1	Lead	3010/6010		0.003	0.005	1
NASJ-159-GH-15-01	1	Naphthalene	3510/8310	ug/L	0.2	0.5	1
NASJ-159-GH-15-01 NASJ-159-GH-15-01	1 1	Naphthalene Acenaphthylene	3510/8310 3510/8310	ug/L ug/L	0.2 0.1	0.5 1	1 1
NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01	1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene	3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L	0.2 0.1 0.1	0.5 1 1	1 1 1
NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01	1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene	3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2	0.5 1 1 1	1 1 1
NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01	1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2	0.5 1 1 1 0.5	1 1 1 1
NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01	1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2	0.5 1 1 1 0.5 0.1	1 1 1 1 1
NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01	1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04	0.5 1 1 0.5 0.1	1 1 1 1 1 1
NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01	1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04	0.5 1 1 0.5 0.1 1	1 1 1 1 1 1 1
NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01	1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04	0.5 1 1 0.5 0.1 1 0.05 0.1	1 1 1 1 1 1 1
NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01	1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04	0.5 1 1 0.5 0.1 1 0.05 0.1	1 1 1 1 1 1 1 1
NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01	1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05	1 1 1 1 1 1 1 1 1
NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01	1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.03 0.04 0.04 0.02 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01	1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Benzo(b) fluoranthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.03 0.04 0.04 0.02 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01	1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (k) fluoranthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.03 0.04 0.04 0.02 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01	1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Benzo(b) fluoranthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.03 0.04 0.04 0.02 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01	1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (k) fluoranthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02 0.02 0.06 0.03	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01	1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (a) pyrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01 NASJ-159-GH-15-01	1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.02 0.03 0.04	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-15-01 NASJ-159-GH-15-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(x) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Benzo(g, h, i) perylene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-15-01 NASJ-159-GH-15-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-15-01 NASJ-159-GH-15-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Endero(a,h) aprylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-15-01 NASJ-159-GH-15-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.05 0.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-15-01 NASJ-159-GH-15-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.05 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-15-01 NASJ-159-GH-15-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(x) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Benzo(g, h, i) perylene Indeno(1, 2, 3 - cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.05 0.1 0.05 0.05 0.1 0.05 0.2 0.05 0.2 0.05 0.1 0.05 0.2 0.05 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-15-01 NASJ-159-GH-15-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.05 0.1 0.05 0.1 0.05 0.20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-15-01 NASJ-159-GH-15-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20 20 20 20 20
NASJ-159-GH-15-01 NASJ-159-GH-15-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(x) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Genzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.05 0.03 0.07 0.07 0.07 0.02	0.5 1 1 0.5 0.1 1 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-15-01 NASJ-159-GH-15-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(x) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 1,3-Dichlorobenzene	3510/8310 3510/8021 5030/8021 5030/8021 5030/8021 5030/8021	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.20 20 20 20 20 20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 20 20 20 20 20 20 20 20 20 20 20 20 20
NASJ-159-GH-15-01 NASJ-159-GH-15-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Benzo(g, h, i) perylene Indeno(1, 2, 3 - cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Rthylbenzene m-Xylene & p-Xylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	3510/8310 3510/8021 5030/8021 5030/8021 5030/8021 5030/8021	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 20 20 20 20 20 20 20 20 20 20 20 20
NASJ-159-GH-15-01 NASJ-159-GH-15-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(x) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 1,3-Dichlorobenzene	3510/8310 3510/8021 5030/8021 5030/8021 5030/8021 5030/8021	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.20 20 20 20 20 20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 20 20 20 20 20 20 20 20 20 20 20 20 20

NASJ-159-GH-21-01	1	Lead	3010/6010	mg/L	0.003	0.005	1
NASJ-159-GH-21-01	1	Naphthalene	3510/8310	ug/L	0.2	0.5	1
NASJ-159-GH-21-01	1	Acenaphthylene	3510/8310	ug/L	0.1	1	1
NASJ-159-GH-21-01	1	1-Methylnaphthalene	3510/8310	_,_	0.1	1	1
NASJ-159-GH-21-01	1	2-Methylnaphthalene	3510/8310	ug/L	0.2	1	1
NASJ-159-GH-21-01	1	Acenaphthene	3510/8310	ug/L	0.2	0.5	1
NASJ-159-GH-21-01	1	Fluorene	3510/8310	ug/L	0.04	0.1	1
NASJ-159-GH-21-01	1	Phenanthrene	3510/8310	ug/L	0.04	1	1
NASJ-159-GH-21-01	1	Anthracene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-21-01	1	Fluoranthene	3510/8310	ug/L	0.04	0.1	1
NASJ-159-GH-21-01	1	Pyrene	3510/8310	ug/L	0.04	0.05	1
NASJ-159-GH-21-01	1	Benzo(a)anthracene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-21-01	1	Chrysene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-21-01	1	Benzo(b)fluoranthene	3510/8310	ug/L	0.06	0.1	1
NASJ-159-GH-21-01	1	Benzo(k)fluoranthene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-21-01	1	Benzo(a)pyrene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-21-01	1	Dibenzo(a,h)anthracene	3510/8310	ug/L	0.07	0.1	1
NASJ-159-GH-21-01	1	Benzo(g,h,i)perylene	3510/8310	ug/L	0.07	0.1	1
NASJ-159-GH-21-01	1	Indeno(1,2,3-cd)pyrene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-21-01	1	P-Terphenyl	3510/8310	*			1
NASJ-159-GH-21-01	1	Methyl tert-butyl ether	5030/8021	ug/L	0.3	2	1
NASJ-159-GH-21-01	1	Benzene	5030/8021	ug/L	0.2	1	1
NASJ-159-GH-21-01	1	Toluene	5030/8021	ug/L	0.4	1	1
NASJ-159-GH-21-01	1	Chlorobenzene	5030/8021	_,	0.4	1	1
NASJ-159-GH-21-01	1	Ethylbenzene	5030/8021	- .	0.2	1	1
NASJ-159-GH-21-01	1	m-Xylene & p-Xylene	5030/8021	٥.	0.3	. 1	1
NASJ-159-GH-21-01	1	o-Xylene	5030/8021		0.2	1	1
NASJ-159-GH-21-01	1	1,3-Dichlorobenzene	5030/8021		0.6	1	1
NASJ-159-GH-21-01	1	1,4-Dichlorobenzene	5030/8021		0.4	• 1	1
NASJ-159-GH-21-01	1	1,2-Dichlorobenzene	5030/8021	ug/L	0.6	1	1
NASJ-159-GH-21-01	1	Bromofluorobenzene	5030/8021	*			1
NACT-150-CU-22-01	1	T a = d	2010/5010	/~			
NASJ-159-GH-22-01	1	Lead	3010/6010	mg/L	0.003	0.005	1
NASJ-159-GH-22-01	1	Naphthalene	3510/8310	ug/L	0.2	0.5	1
NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1	Naphthalene Acenaphthylene	3510/8310 3510/8310	ug/L ug/L	0.2 0.1	0.5 1	1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene	3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L	0.2 0.1 0.1	0.5 1 1	1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene	3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2	0.5 1 1 1	1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2	0.5 1 1 1 0.5	1 1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2	0.5 1 1 1 0.5	1 1 1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04	0.5 1 1 0.5 0.1	1 1 1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04	0.5 1 1 0.5 0.1 1	1 1 1 1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04	0.5 1 1 0.5 0.1 1 0.05 0.1	1 1 1 1 1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04	0.5 1 1 0.5 0.1 1 0.05 0.1	1 1 1 1 1 1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.03 0.04 0.03	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05	1 1 1 1 1 1 1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.03 0.04 0.04 0.02 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.1 0.05 0.05	1 1 1 1 1 1 1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.03 0.04 0.04 0.02 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.03 0.04 0.04 0.02 0.02 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.04 0.03 0.04 0.04 0.02 0.02 0.06 0.03	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.05 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.03 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03	0.5 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05 0.05 0.05 0.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(k) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Benzo(g, h, i) perylene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.02 0.06 0.03 0.03 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Benzo(g, h, i) perylene Indeno(1,2,3-cd) pyrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.03 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03	0.5 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05 0.05 0.05 0.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Benzo(g, h, i) perylene Indeno(1, 2, 3-cd) pyrene P-Terphenyl	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.05 0.1 0.05 0.1 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Benzo(g, h, i) perylene Indeno(1, 2, 3-cd) pyrene P-Terphenyl Methyl tert-butyl ether	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.03 0.04 0.02 0.02 0.02 0.06 0.03 0.03 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.05 0.1 0.05 0.1 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Benzo(g, h, i) perylene Indeno(1, 2, 3-cd) pyrene P-Terphenyl	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.05 0.1 0.05 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.05 0.1 0.05 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.05 0.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a, h) anthracene Dibenzo(a, h) anthracene Benzo(g, h, i) perylene Indeno(1, 2, 3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Benzo(g, h, i) perylene Indeno(1, 2, 3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.03 0.04 0.02 0.06 0.03 0.07 0.07 0.07 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.05 0.1 1 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Benzo(g, h, i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02 0.4 0.4 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.05 0.1 0.05 0.1 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Benzo(g, h, i) perylene Indeno(1, 2, 3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.02 0.04 0.04 0.03	0.5 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Dibenzo(a,h) aprylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene	3510/8310 3510/8021 5030/8021 5030/8021 5030/8021	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.02 0.06 0.03 0.07 0.07 0.07 0.02 0.4 0.4 0.2 0.4	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Benzo(g, h, i) perylene Indeno(1, 2, 3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 0-Xylene 1,3-Dichlorobenzene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.03 0.04 0.02 0.06 0.03 0.07 0.07 0.07 0.02 0.3 0.2 0.4 0.4 0.2 0.3	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-22-01 NASJ-159-GH-22-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Benzo(g, h, i) perylene Indeno(1, 2, 3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 0-Xylene 1, 3-Dichlorobenzene 1, 4-Dichlorobenzene	3510/8310 5030/8021 5030/8021 5030/8021 5030/8021 5030/8021 5030/8021	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.02 0.06 0.03 0.07 0.07 0.07 0.02 0.4 0.4 0.2 0.4	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

NASJ-159-GH-24-01	1	Lead	3010/6010	mg/L 0.	003	0.005	1
NASJ-159-GH-24-01	1	Naphthalene ·	3510/8310	ug/L	0.2	0.5	1
NASJ-159-GH-24-01	1	Acenaphthylene	3510/8310	ug/L	0.1	1	1
NASJ-159-GH-24-01	1	1-Methylnaphthalene	3510/8310	ug/L	0.1	1	1
NASJ-159-GH-24-01	1	2-Methylnaphthalene	3510/8310	ug/L	0.2	1	1
NASJ-159-GH-24-01	1	Acenaphthene	3510/8310	ug/L	0.2	0.5	1
NASJ-159-GH-24-01	1	Fluorene	3510/8310	ug/L	0.04	0.1	1
NASJ-159-GH-24-01	1	Phenanthrene	3510/8310	ug/L	0.04	1	1
NASJ-159-GH-24-01	1	Anthracene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-24-01	1	Fluoranthene	3510/8310	ug/L	0.04	0.1	1
NASJ-159-GH-24-01	1	Pyrene	3510/8310	ug/L	0.04	0.05	1
NASJ-159-GH-24-01	1	Benzo(a)anthracene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-24-01	1	Chrysene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-24-01	1	Benzo(b)fluoranthene	3510/8310	ug/L	0.06	0.1	1
NASJ-159-GH-24-01	1	Benzo(k)fluoranthene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-24-01	1	Benzo(a)pyrene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-24-01	1	Dibenzo(a,h)anthracene	3510/8310	ug/L	0.07	0.1	1
NASJ-159-GH-24-01	1	Benzo(g,h,i)perylene	3510/8310	ug/L	0.07	0.1	1
NASJ-159-GH-24-01	1	Indeno (1,2,3-cd) pyrene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-24-01	1	P-Terphenyl	3510/8310	.₺			1
NASJ-159-GH-24-01	1	Methyl tert-butyl ether	5030/8021	ug/L	0.3	2	1
NASJ-159-GH-24-01	1	Benzene	5030/8021	ug/L	0.2	1	1
NASJ-159-GH-24-01	1	Toluene	5030/8021	ug/L	0.4	1	1
NASJ-159-GH-24-01	1	Chlorobenzene	5030/8021	ug/L	0.4	1	1
NASJ-159-GH-24-01	1	Ethylbenzene	5030/8021	ug/L	. 0.2	1	1
NASJ-159-GH-24-01	1	m-Xylene & p-Xylene	5030/8021	ug/L	0.3	1	1
NASJ-159-GH-24-01	1	o-Xylene	5030/8021	ug/L	0.2	1	1
NASJ-159-GH-24-01	1	1,3-Dichlorobenzene	5030/8021	ug/L	0.6	1	. 1
NASJ-159-GH-24-01	1	1,4-Dichlorobenzene	5030/8021	ug/L	0.4	1	1
NASJ-159-GH-24-01	1	1,2-Dichlorobenzene	5030/8021	ug/L	0.6	1	1
NASJ-159-GH-24-01	1	Bromofluorobenzene	5030/8021	%			1

ENVIRONMENTAL CONSERVATION LABORATORIES

4810 Executive Park Court, Suite 211 10207 General Drive Jacksonville, Florida 32216-6069 Orlando, Florida 32824

Ph. (904) 296-3007 • Fax (904) 296-6210 Ph. (407) 826-5314 • Fax (407) 850-6945

ENCO CompQAP No.: 960038G/0 CHAIN OF CUSTODY RECORD

PROJECT REFE	TAX, 6A	SHILL	10/3	PROJE	CT NO.	P.O. NUMBER		MATRIX TYPE REQUIRED ANALYSIS PAGE OF				OF /										
PROJECT LOC. (State)	SAMPLER(S) NAME		ARK	EA FAX	90428101	70	7	777	, ohen		77		⅓ /				///		/ /	STA REF	V
CLIENT NAME CT CLIENT ADDRE	Tech (ESS (CITY, STATE,	MUS 170	c .	CLIEN	PROJECT MAN	DALE	///-		SOIL/SOLID/SEDIMENT	AIR COUSLIQUID (4), So.		(2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4									EXPEDITE DELIVERY	
JACK	SONVILI	LE, FL	3	225	56		SURFACE WATER	ORINKING ER	NATE DISEL		/	4. (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)/20)	/	/	/						, -
	SAM						78/ <i>8/</i>	K EV		SLUDG	# FIFC	/ 4/	1410	PRE	SER	VATIN	<u>/</u>		\leftarrow	- Date	Due:	
STATION	DATE	TIME	GRAB	COMP	SAMPLE ID	ENTIFICATION			\s\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	SLU	[\$ 10	1//		1		AS SUBI	AITTED			/	REMARKS	
1	073099	1010	V		MSJ-15	9-64-24-0	/ /			\perp	2	. /	1							CO	403	944
2	073099	1624			NAST-159	1-6H-14-01		\coprod	$\perp \downarrow$		2	1										
3	073099	1148		1	NAST-159	-GH-21-01					2	11										
4	073099	1220	V			-GH-01-01)	(l									
5	073099	1505				i-GH-15-01		\Box	\top	_	2	11	1									
6	073099	1543		1		7-GH-22-01	 /	$\dagger \dagger$	77		2	11	1								·	
7	073099	1712				i-GH-12-01		T			2	(1									
8	673099		-	y		-GH-06-01	1				1-2		-							Did	not con	llect
9						7														Ke	Dale	
10									\sqcap													, ,
11																						
12								T														
13					-			\prod														
14																						
SAMPLE KIT PE		ANDO		DATÉ	TIME	Meun Meun	(\mathcal{U}_{ℓ})	4 <	b			T3699	TIME 18/1	/		BY: (SIG					DATE	TIME
RELINQUISHED	D BY: (SIGNATURE	≣)		DATE	TIME	RECEIVED BY: (S	IGNATURE) L	5		1	DATE 130/59	TIME	- 1	LINQUIS	SHED BY:	(SIGNA	TURE)			DATE	TIME
RECEIVED BY	(SIGNATURE)			DATE	TIME	RELINQUISHED I		URE))ATE	TIME		CEIVED	BY: (SIG	NATURE	E)			DATE	TIME
RECEIVED FOR	LABORATORY B	Y: (SIGNATURE)	DATE	1199	TIME 934		ACT EN	60 LO	_	<u>98</u>	REMAF	RKS	1									<u> </u>

PROJECT Ms. Lee Leck

DELIVERY Tetra Tech NUS, Inc.

ADDRESS: 661 Anderson Dr.

Foster Plaza 7

Pittsburg, PA 15220-2745

INVOICE: Accounts Payable

ADDRESS: 661 Anderson Dr. Foster Plaza 7

Pittsburg, PA 15220-2745

REFERENCE : NAS JAX Gas Hill

NO255 (CTO-101)

P.O. # : PITT-N7173-P99492(sd)

Taxpayer ID # : 59-3497702

INVOICE

REPORT #

: JR7908

DATE SUBMITTED : July 31, 1999
DATE REPORTED : August 18, 1999

DESCRIPTION	PRICE	QTY	AMOUNT
EPA METHOD 5030/8021 (VOCs by GC/PID) EPA METHOD 3510/8310 (PAH by HPLC) EPA METHOD 3010/6010b (Lead)	\$ 50.00 \$ 120.00 \$ 12.00	X 7	\$ 840.00
	TOTAL		\$ 1274.00

Please remit payment to :

Environmental Conservation Laboratories, Inc. 9500 Satellite Blvd., Suite 190 Orlando, FL 32837-8466

TERMS: NET 30 DAYS

Past Due Balances are subject to a 1.5% per month service charge.

Environmental Conservation Laboratories, Inc.

4810 Executive Park Court, Suite 211 Jacksonville, Florida 32216-6069 904 / 296-3007 Fax 904 / 296-6210 www.encolabs.com

DHRS Certification No. E82277

CASE NARRATIVE

Date:

August 19, 1999

Client:

Tetra Tech NUS, Inc.

Project #:

N0255 / CTO101

Lab ID:

JR7908

Overview

All samples submitted were analyzed by Environmental Conservation Laboratories, Inc. in accordance with the methods referenced in the laboratory report. Any particular difficulties encountered during sample handling by Environmental Conservation Laboratories, Inc. will be discussed in the QC Remarks section below.

Seven aqueous samples were received on July 31, 1999 in good condition on wet ice. No discrepancies were noted between the Chain of Custody and the containers. Samples were analyzed for the parameters as listed on the Chain of Custody.

All samples were extracted and analyzed within method-specified holding times.

Quality Control Remarks

In the 8021 analyses, the MS and MSD recoveries for benzene were unavailable due to high sample concentration.

Other Comments

Quality assurance acceptance limits for surrogates, matrix spikes, matrix spike duplicates and laboratory control limits are established in-house based on historical data.

The analytical data presented in this report are consistent with the methods as referenced in the analytical report. Any exceptions or deviations are noted in the QC remarks section of this narrative. Should there be any questions regarding this package, please feel free to contact the undersigned for additional information.

Released By:

Environmental Conservation Laboratories, Inc.

Richard E. Carno, II Laboratory Manager

Environmental Conservation Laboratories, Inc.

4810 Executive Park Court, Suite 211 Jacksonville, Florida 32216-6069 904 / 296-3007 Fax 904 / 296-6210 www.encolabs.com

DHRS Certification No. E82277

CLIENT : Tetra Tech NUS, Inc.

ADDRESS: 661 Anderson Dr.

Foster Plaza 7

Pittsburg, PA 15220-2745

REPORT #

: JR7920

DATE SUBMITTED: August 3, 1999

DATE REPORTED : August 23, 1999

PAGE 1 OF 25

ATTENTION: Ms. Lee Leck

SAMPLE IDENTIFICATION

Samples submitted and identified by client as:

PROJECT #: NO255/CTO101

NAS JAX Gas Hill

08/02/99

#1	-	NASJ-159-GH-09-01	@	09:58
#2	-	NASJ-159-GH-03-01	@	10:20
#3	-	NASJ-159-GH-16-01	@	12:05
#4	-	NASJ-159-GH-02-01	@	12:35
#5	-	NASJ-159-GH-19-01	@	15:40
#6	-	NASJ-159-GH-13-01	@	15:55
#7	-	NASJ-159-GH-10-01	@	17:28
#8	-	NASJ-159-GH-17-01	@	17:40
#9	-	NASJ-159-GH-DUP2-01		
#10	-	TRIPBLANK		

PROJECT MANAGER

REPORT # : JR7920

DATE REPORTED: August 23, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 2 OF 25

EPA METHOD 5030/8021 - VOLATILE ORGANICS	NASJ-159-GH-09-01	<u>Units</u>
Methyl tert-butyl ether	2.0 U	μ g/L
Benzene	1.0 U	μ g/L
Toluene	1.0 U	μg/L
Chlorobenzene Ethylbenzene	1.0 U 1.0 U	μg/L
m-Xylene & p-Xylene	1.0 U	μg/L μg/L
o-Xylene	1.0 U	μg/L
1,3-Dichlorobenzene	1.0 U	μg/L
1,4-Dichlorobenzene	1.0 U	$\mu { t g}/{ t L}$
1,2-Dichlorobenzene	1.0 U	μ g/L
Surrogate (Bromofluorobenzene) Surrogate Expected Value Surrogate Reported Value	50 48.5 97	μg/L μg/L
Surrogate Percent Recovery Surrogate Control Limits	65-129	olo olo
Date Analyzed	08/06/99	
TOTAL METALS METHOD	NASJ-159-GH-09-01	<u>Units</u>
Lead 3010/6010 Date Analyzed	0.0050 U 08/04/99	mg/L

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR7920

DATE REPORTED: August 23, 1999
REFERENCE : NO255/CTO101
PROJECT NAME : NAS JAX Gas Hill

PAGE 3 OF 25

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-09-01	Units
Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene	0.50 U 1.0 U 1.0 U 1.0 U 0.50 U 0.10 U 1.0 U 0.050 U 0.10 U 0.050 U 0.050 U 0.050 U 0.10 U 0.050 U 0.10 U 0.050 U 0.10 U 0.050 U 0.050 U 0.050 U	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L
Surrogate (p-terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limit Date Extracted Date Analyzed	10 7.8 78 39-148 08/05/99 08/10/99	μg/L μg/L % %

REPORT # : JR7920

DATE REPORTED: August 23, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 4 OF 25

EPA METHOD 5030 VOLATILE ORGANI		NASJ-159-GH-03-01	<u>Units</u>
Methyl tert-but	yl ether	2.0 U	μ g/L
Benzene		1.0 U	$\mu g/L$
Toluene		1.0 U	μg/L
Chlorobenzene		1.0 U	$\mu { m g}/{ m L}$
Ethylbenzene		1.0 U	$\mu { t g}/{ t L}$
m-Xylene & p-Xy	lene	1.0 U	$\mu { m g}/{ m L}$
o-Xylene		1.0 U	$\mu g/L$
1,3-Dichloroben	zene	1.0 U	$\mu g/L$
1,4-Dichloroben	zene	1.0 U	μg/L
1,2-Dichloroben	zene	1.0 U	$\mu { t g}/{ t L}$
Surrogate (Brome	ofluorobenzene)	•	
Surrogate Expect	ted Value	50	$\mu \mathrm{g/L}$
Surrogate Report	ted Value	59	μg/L
Surrogate Percei	nt Recovery	118	%
Surrogate Contro	ol Limits	65-129	%
Date Analyzed		08/09/99	
TOTAL METALS	METHOD	NASJ-159-GH-03-01	<u>Units</u>
Lead Date Analyzed	3010/6010	0.0050 U 08/04/99	mg/L

REPORT # : JR7920

DATE REPORTED: August 23, 1999
REFERENCE : NO255/CTO101
PROJECT NAME : NAS JAX Gas Hill

PAGE 5 OF 25

PAH BY HPLC	NASJ-159-GH-03-01	<u>Units</u>
Naphthalene	0.50 U	μ g/L
Acenaphthylene	1.0 U	μg/L
1-Methylnaphthalene	3.7	$\mu { m g}/{ m L}$
2-Methylnaphthalene	1.0 U	$\mu g/L$
Acenaphthene	0.50 U	$\mu { t g}/{ t L}$
Fluorene	0.44	$\mu { m g}/{ m L}$
Phenanthrene	1.0 U	μg/L
Anthracene	0.050 U	$\mu { m g}/{ m L}$
Fluoranthene	0.10 U	μ g/L
Pyrene	0.050 U	μ g/L
Benzo(a) anthracene	0.050 U	$\mu { t g}/{ t L}$
Chrysene	0.050 U	$\mu { t g}/{ t L}$
Benzo(b)fluoranthene	0.10 U	$\mu { t g}/{ t L}$
Benzo(k)fluoranthene	0.050 U	$\mu exttt{g/L}$
Benzo(a)pyrene	0.050 U	μ g/L
Dibenzo(a,h)anthracene	0.10 U	μg/L
Benzo(g,h,i)perylene	0.10 · U	μ g/L
Indeno(1,2,3-cd)pyrene	0.050 U	$\mu { t g}/{ t L}$
Surrogate (p-terphenyl)		
Surrogate Expected Value	. 10	μ g/L
Surrogate Reported Value	7.4	μ g/L
Surrogate Percent Recovery	74	%
Surrogate Control Limit	39-148	%
Date Extracted	08/05/99	
Date Analyzed	08/10/99	

REPORT # : JR7920

DATE REPORTED: August 23, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 6 OF 25

VOLATILE ORGANICS	NASJ-159-GH-16-01	<u>Units</u>
Methyl tert-butyl ether Benzene	2.0 U 1.0 U	μα/Γ μα/Γ
Toluene Chlorobenzene	1.0 U 1.0 U	μg/L μg/L
Ethylbenzene m-Xylene & p-Xylene o-Xylene	1.0 U 1.0 U 1.0 U	μg/L μg/L
1,3-Dichlorobenzene 1,4-Dichlorobenzene	1.0 U 1.0 U	μg/L μg/L μg/L
1,2-Dichlorobenzene	1.0 U	$\mu g/L$
Surrogate (Bromofluorobenzene) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limits Date Analyzed	50 49.5 99 65-129 08/06/99	μg/L μg/L % %

TOTAL	<u>METALS</u>	METHOD	NASJ-159-GH-16-01	<u>Units</u>
Lead Date	Analyzed	3010/6010	0.0050 U 08/09/99	mg/L

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR7920

DATE REPORTED: August 23, 1999
REFERENCE : NO255/CTO101
PROJECT NAME : NAS JAX Gas Hill

PAGE 7 OF 25

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-16-01	<u>Units</u>
Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene	0.50 U 1.0 U 1.0 U 1.0 U 0.50 U 0.10 U 1.0 U 0.050 U 0.10 U 0.050 U 0.050 U 0.050 U 0.10 U 0.050 U 0.10 U 0.050 U 0.10 U 0.050 U	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L
Surrogate (p-terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limit Date Extracted Date Analyzed	10 7.7 77 39-148 08/05/99 08/11/99	μg/L μg/L % %

REPORT # : JR7920

DATE REPORTED: August 23, 1999
REFERENCE : NO255/CTO101
PROJECT NAME : NAS JAX Gas Hill

PAGE 8 OF 25

EPA METHOD 5030/8021 - VOLATILE ORGANICS	NASJ-159-GH-02-01	<u>Units</u>
Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	10 U D1 6.0 D1 8.0 D1 5.0 U D1 38 D1 700 D1 58 D1 5.0 U D1 5.0 U D1 5.0 U D1	μα/L μα/L μα/L μα/L μα/L μα/L
1,2-Dichlorobenzene	5.0 U D1	$\mu exttt{g/L} \ \mu exttt{g/L}$
Surrogate (Bromofluorobenzene) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limits Date Analyzed	50 53.5 107 65-129 08/09/99	μg/L μg/L %

TOTAL METALS	METHOD	NASU-159-GH-02-01	Units
Lead Date Analyzed	3010/6010	0.0050 U 08/04/99	mg/L

 $^{{\}tt U}={\tt Compound}$ was analyzed for but not detected to the level shown. ${\tt D1}={\tt Analyte}$ value determined from a 1:5 dilution.

REPORT # : JR7920

DATE REPORTED: August 23, 1999 REFERENCE : NO255/CTO101 PROJECT NAME : NAS JAX Gas Hill

PAGE 9 OF 25

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-02-01	<u> Units</u>
Naphthalene	2.0	μ g/L
Acenaphthylene	1.0 U	μ g/L
1-Methylnaphthalene	1.0 U	μ g/L
2-Methylnaphthalene	3.3	μ g/L
Acenaphthene	0.50 U	μ g/L
Fluorene	0.12 I	μ g/L
Phenanthrene	1.0 U	μ g/L
Anthracene	0.050 Ŭ	$\mu extsf{g}/ ext{L}$
Fluoranthene	0.10 U	μg/L
Pyrene	0.11 I	μ g/L
Benzo(a)anthracene	0.050 U	μ g/L
Chrysene	0.050 U	μ g/L
Benzo(b)fluoranthene	0.10 U	μ g/L
Benzo(k)fluoranthene	0.050 U	μ g/L
Benzo(a)pyrene	0.050 U	μ g/L \cdot
Dibenzo(a,h)anthracene	0.10 Ŭ	μ g/L
Benzo(g,h,i)perylene	0.10 U	μ g/L
Indeno(1,2,3-cd)pyrene	0.050 U	μg/L
Surrogate (p-terphenyl)		
Surrogate Expected Value	10	$\mu g/L$
Surrogate Reported Value	6.7	$\mu g/L$
Surrogate Percent Recovery	67	%
Surrogate Control Limit	39-148	%
Date Extracted	08/05/99	
Date Analyzed	08/11/99	

 $^{{\}tt U}={\tt Compound}$ was analyzed for but not detected to the level shown.

I = Analyte detected; value is between the Method Detection Level (MDL) and the Practical Quantitation Level (PQL).

REPORT # : JR7920

DATE REPORTED: August 23, 1999
REFERENCE : NO255/CTO101
PROJECT NAME : NAS JAX Gas Hill

PAGE 10 OF 25

RESULTS OF ANALYSIS

EPA METHOD 5030/8021 -

VOLATILE ORGANICS		NASJ-159-GH-19-01	<u>Units</u>
Methyl tert-butyl	ether	2.0 U	μg/L
Benzene		1.0 U	$\mu \mathrm{g}/\mathrm{L}$
Toluene		1.0 U	μg/L
Chlorobenzene		1.0 U	μg/L
Ethylbenzene		1.0 U	μg/L
m-Xylene & p-Xyle	ene	1.0 U	$\mu \mathrm{g}/\mathrm{L}$
o-Xylene		1.0 U	$\mu { m g}/{ m L}$
1,3-Dichlorobenze	ene	1.0 U	μg/L
1,4-Dichlorobenze	ene	1.0 U	μg/L
1,2-Dichlorobenze		1.0 U	μg/L
Surrogate (Bromof	luorobenzene)		
Surrogate Expecte		50	μ g/L
Surrogate Reported Value		50	μg/L
Surrogate Percent		100	ે
Surrogate Control		65-129	. %
Date Analyzed		08/07/99	
TOTAL METALS	METHOD	NASJ-159-GH-19-01	<u>Units</u>
Lead Date Analyzed	3010/6010	0.0050 U 08/09/99	mg/L

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR7920

DATE REPORTED: August 23, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 11 OF 25

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-19-01	<u>Units</u>
Naphthalene	0.50 U	μg/L
Acenaphthylene	1.0 U	$\mu g/L$
1-Methylnaphthalene	1.0 U	$\mu { t g}/{ t L}$
2-Methylnaphthalene	1.0 U	$\mu { m g}/{ m L}$
Acenaphthene	0.50 U	μg/L
Fluorene	0.10 U	μg/L
Phenanthrene	1.0 U	$\mu { m g}/{ m L}$
Anthracene	0.050 U	μg/L
Fluoranthene	0.10 U	μg/L
Pyrene	0.050 U	μg/L
Benzo(a)anthracene	0.050 U	$\mu g/L$
Chrysene	0.050 U	μg/L
Benzo(b) fluoranthene	0.10 U	$\mu g/L$
Benzo(k)fluoranthene	0.050 U	$\mu { m g}/{ m L}$
Benzo(a)pyrene	0.050 U	$\mu { m g}/{ m L}$
Dibenzo(a,h)anthracene	0.10 U	$\mu { m g/L}$
Benzo(g,h,i)perylene	0.10 U	μg/L
Indeno(1,2,3-cd)pyrene	0.050 U	μ g/L
Surrogate (p-terphenyl)		
Surrogate Expected Value	10	$\mu { m g}/{ m L}$
Surrogate Reported Value	5.2	μg/L
Surrogate Percent Recovery	52	%
Surrogate Control Limit	39-148	%
Date Extracted	08/05/99	
Date Analyzed	08/11/99	

REPORT # : JR7920

DATE REPORTED: August 23, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 12 OF 25

EPA METHOD 5030/8021 - VOLATILE ORGANICS	NASJ-159-GH-13-01	<u>Units</u>
Methyl tert-butyl ether	2.0 U	μg/L
Benzene	1.0 U	μ g/L
Toluene	1.0 U	μ g/L
Chlorobenzene	1.0 U	μg/L
Ethylbenzene	1.4	μ g/L
m-Xylene & p-Xylene	10	μg/L
o-Xylene	4.5	μg/L
1,3-Dichlorobenzene	1.0 U	μg/L
1,4-Dichlorobenzene	1.0 U	μg/L
1,2-Dichlorobenzene	1.0 U	$\mu g/L$
Surrogate (Bromofluorobenzene)		
Surrogate Expected Value	50	$\mu { m g}/{ m L}$
Surrogate Reported Value	49.5	$\mu g/L$
Surrogate Percent Recovery	99	%
Surrogate Control Limits	65-129	%
Date Analyzed	08/06/99	
TOTAL METALS METHOD	NACT. 150_CU_1201	TT
TOTAL METALS METHOD	NASJ-159-GH-13-01	<u>Units</u>
Lead 3010/6010	0.0050 U	mg/L
Date Analyzed	08/09/99	_

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR7920

DATE REPORTED: August 23, 1999
REFERENCE : NO255/CTO101
PROJECT NAME : NAS JAX Gas Hill

PAGE 13 OF 25

EPA METHOD 3510/8310 -		
PAH BY HPLC	NASJ-159-GH-13-01	<u>Units</u>
Nambthalana	0.50 Ŭ	μg/L
Naphthalene	1.0 U	
Acenaphthylene	1.0 U	μg/L
1-Methylnaphthalene		μg/L
2-Methylnaphthalene	1.0 U	μg/L
Acenaphthene	0.50 U	μg/L
Fluorene	0.10 U	μg/L
Phenanthrene	1.0 U	μ g/L
Anthracene	.0.050 U	$\mu extsf{g}/ extsf{L}$
Fluoranthene	0.10 U	$\mu exttt{g/L}$
Pyrene	0.050 U	$\mu { t g}/{ t L}$
Benzo(a)anthracene	0.050 U	$\mu extsf{g/L}$
Chrysene	0.050 U	$\mu { m g/L}$
Benzo(b)fluoranthene	0.10 U	$\mu {f g}/{f L}$
Benzo(k)fluoranthene	0.050 U	μg/L
Benzo(a)pyrene	0.050 U	$\mu g/L$
Dibenzo(a,h) anthracene	0.10 U	$\mu { m g}/{ m L}$
Benzo(g,h,i)perylene	0.10 U	μg/L
Indeno(1,2,3-cd)pyrene	0.050 U	μg/L
21146116 (2/2/6 04/2/2 = 114		
Surrogate (p-terphenyl)	•	
Surrogate Expected Value	10	$\mu { m g}/{ m L}$
Surrogate Reported Value	7.3	μg/L
Surrogate Percent Recovery	73	%
Surrogate Control Limit	39-148	%
Date Extracted	08/05/99	Ü
	08/11/99	
Date Analyzed	00/11/00	

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR7920

DATE REPORTED: August 23, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 14 OF 25

NASJ-159-GH-10-01	Units
2.0 U 1.0 U 1.0 U	μg/L μg/L μg/L
1.0 U 1.0 U	μg/L μg/L
1.0 U 1.0 U	μg/L μg/L μg/L
1.0 U 1.0 U	μg/L μg/L
50 48.5 97 65-129 08/06/99	μg/L μg/L % %
	2.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U

TOTAL	L METALS	METHOD	NASJ-159-GH-10-01	<u>Units</u>
Lead Date	Analyzed	3010/6010	0.0050 U 08/04/99	mg/L

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR7920

DATE REPORTED: August 23, 1999
REFERENCE : NO255/CTO101
PROJECT NAME : NAS JAX Gas Hill

PAGE 15 OF 25

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-10-01	<u>Units</u>
Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene	0.50 U 1.0 U 1.0 U 1.0 U 0.50 U 0.10 U 1.0 U 0.050 U 0.10 U 0.050 U 0.050 U 0.050 U 0.10 U 0.10 U 0.050 U 0.10 U 0.050 U 0.10 U 0.050 U	μας, μας μας μας μας μας μας μας ας ας ας ας ας ας ας ας ας ας ας ας α
Surrogate (p-terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limit Date Extracted Date Analyzed	10 7.6 76 39-148 08/05/99 08/11/99	μg/L μg/L %

REPORT # : JR7920

DATE REPORTED: August 23, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 16 OF 25

EPA METHOD 5030/8021 - VOLATILE ORGANICS	NASJ-159-GH-17-01	<u>Units</u>
Methyl tert-butyl ether	2.0 U	μg/L
Benzene	1.0 U	μg/L
Toluene	1.0 U	μq/L
Chlorobenzene	1.0 U	μg/L
Ethylbenzene	1.0 U	μg/L
m-Xylene & p-Xylene	1.0 U	μg/L
o-Xylene	1.0 U	μg/L
1,3-Dichlorobenzene	1.0 U	μg/L
1,4-Dichlorobenzene	1.0 U	μg/L
1,2-Dichlorobenzene	1.0 U	μ g/L
Surrogate (Bromofluorobenzene)		
Surrogate Expected Value	50	μg/L
Surrogate Reported Value	50	μg/L
Surrogate Percent Recovery	100	%
Surrogate Control Limits	65-129	%
Date Analyzed	08/06/99	

TOTAL METALS	METHOD	NASJ-159-GH-17-01	Units
Lead Date Analyzed	3010/6010	0.0050 U 08/04/99	mg/L

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR7920

DATE REPORTED: August 23, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 17 OF 25

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-17-01	<u>Units</u>
Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene	0.50 U 1.0 U 1.0 U 1.0 U 4.0 0.84 1.0 U 0.050 U 0.10 U 0.050 U 0.050 U 0.050 U 0.050 U	μg/L μg/L μg/L μg/L μg/L μg/L μα/L μα/L μα/L μα/L μα/L μα/L
Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene	0.050 U 0.050 U 0.10 U 0.10 U 0.050 U	μg/L μg/L μg/L μg/L μg/L
Surrogate (p-terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limit Date Extracted Date Analyzed	10 7.6 76 39-148 08/05/99 08/11/99	μg/L μg/L %

REPORT # : JR7920

DATE REPORTED: August 23, 1999
REFERENCE : NO255/CTO101
PROJECT NAME : NAS JAX Gas Hill

Units

PAGE 18 OF 25

NASJ-159-GH-DUP2-01

RESULTS OF ANALYSIS

EPA METHOD 5030/8021 -

VOLATILE ORGANICS

Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene		2.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.7 1.0 U 1.0 U 1.0 U	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L
Surrogate (Bromofluorobenzene) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limits Date Analyzed		50 49.5 99 65-129 08/06/99	μg/L μg/L % %
TOTAL METALS	METHOD	NASJ-159-GH-DUP2-01	<u>Units</u>
Lead Date Analyzed	3010/6010	0.0050 U 08/04/99	mg/L

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR7920

DATE REPORTED: August 23, 1999
REFERENCE : NO255/CTO101
PROJECT NAME : NAS JAX Gas Hill

PAGE 19 OF 25

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-DUP2-01	<u>Units</u>
Naphthalene	0.50 U	μg/L
Acenaphthylene	1.0 U	μg/L
1-Methylnaphthalene	1.0 U	μg/L
2-Methylnaphthalene	1.0 U	$\mu { t g}/{ t L}$
Acenaphthene	3.5	$\mu { m g/L}$
Fluorene	0.74	μg/L
Phenanthrene	1.0 U	$\mu exttt{g/L}$
Anthracene	0.050 U	μ g/L
Fluoranthene	0.10 U	$\mu { t g}/{ t L}$
Pyrene	0.050 U	$\mu exttt{g/L}$
Benzo(a)anthracene	0.050 U	$\mu { m g/L}$
Chrysene	0.050 U	$\mu { t g}/{ t L}$
Benzo(b)fluoranthene	0.10 U	μ g/L
Benzo(k)fluoranthene	0.050 U	$\mu exttt{g/L}$
Benzo(a)pyrene	0.050 U	$\mu exttt{g/L}$
Dibenzo(a,h)anthracene	0.10 U	$\mu { t g}/{ t L}$
Benzo(g,h,i)perylene	0.10 U	μ g/L
Indeno(1,2,3-cd)pyrene	0.050 U	μ g/L
Surrogate (p-terphenyl)		
Surrogate Expected Value	10	$\mu { m g/L}$
Surrogate Reported Value	7.1	$\mu exttt{g/L}$
Surrogate Percent Recovery	71	ે
Surrogate Control Limit	39-148	%
Date Extracted	08/05/99	
Date Analyzed	08/11/99	

REPORT # : JR7920

DATE REPORTED: August 23, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 20 OF 25

EPA METHOD 5030/8021 - VOLATILE ORGANICS	TRIPBLANK	<u>Units</u>
Methyl tert-butyl ether	2.0 U	μq/L
Benzene	1.0 U	μg/L
Toluene	1.0 U	μg/L
Chlorobenzene	1.0 U	μg/L
Ethylbenzene	1.0 U	μg/L
m-Xylene & p-Xylene	1.0 U	μg/L
o-Xylene	1.0 U	μg/L
1,3-Dichlorobenzene	1.0 U	μg/L μg/L
1,4-Dichlorobenzene	1.0 U	μg/L
1,2-Dichlorobenzene	1.0 U	μg/L
1, 2-bichiolobenzene	1.0 0	μ g/ Π
Surrogate (Bromofluorobenzene)		
Surrogate Expected Value	50	μg/L
Surrogate Reported Value	49.5	μg/L
Surrogate Percent Recovery	99	% %
Surrogate Control Limits	65-129	%
Date Analyzed	08/06/99	•
Date Analyzea	00,00,00	

REPORT # : JR7920

DATE REPORTED: August 23, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 21 OF 25

EPA METHOD 5030/	′8021 -		
VOLATILE ORGANIC		LAB BLANK	<u>Units</u>
Methyl tert-buty	vl ether	2.0 U	μg/L
Benzene		1.0 U	μ g/L
Toluene		1.0 U	μ g/L
Chlorobenzene		1.0 U	μg/L
Ethylbenzene		1.0 U	μg/L
m-Xylene & p-Xyl	ene	1.0 U 1.0 U	μg/L
o-Xylene 1,3-Dichlorobenz	one	1.0 U	μg/L μg/L
1,4-Dichlorobenz		1.0 U	μg/L
1,2-Dichlorobenz		1.0 U	μg/L
Surrogate (Bromo	fluorobenzene)		
Surrogate Expect		50	μg/L
Surrogate Report		49	μg/L μg/L
Surrogate Percen		98	%
Surrogate Contro		65-129	%
Date Analyzed		08/06/99	
TOTAL METALS	METHOD	LAB BLANK	Units
Lead	3010/6010	0.0050 U	mg/L
Date Analyzed		08/04/99	

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR7920

DATE REPORTED: August 23, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 22 OF 25

EPA METHOD 3510/8310 - PAH BY HPLC	LAB BLANK	<u>Units</u>
Naphthalene	0.50 U 1.0 U	μg/L
Acenaphthylene 1-Methylnaphthalene	1.0 U	μg/L
2-Methylnaphthalene	1.0 U	μg/L μg/L
Acenaphthene	0.50 U	μg/L μg/L
Fluorene	0.10 U	μ g/L
Phenanthrene	1.0 U	μg/L μg/L
Anthracene	0.050 U	μg/L
Fluoranthene	0.10 U	μg/L
Pyrene	0.050 U	μg/L
Benzo(a)anthracene	0.050 U	μg/L
Chrysene	0.050 U	μg/L
Benzo(b)fluoranthene	0.10 U	μg/L
Benzo(k)fluoranthene	0.050 U	μg/L
Benzo(a)pyrene	0.050 U	μ g/L
Dibenzo(a,h)anthracene	0.10 U	$\mu g/L$
Benzo(g,h,i)perylene	0.10 U	$\mu { t g}/{ t L}$
Indeno(1,2,3-cd)pyrene	0.050 U	μ g/L
Surrogate (p-terphenyl)		
Surrogate Expected Value	10	μg/L
Surrogate Reported Value	8.1	μg/L
Surrogate Percent Recovery	81	% %
Surrogate Control Limit	39-148	. %
Date Extracted	08/05/99	-
Date Analyzed	08/10/99	

REPORT # : JR7920

DATE REPORTED: August 23, 1999
REFERENCE : NO255/CTO101
PROJECT NAME : NAS JAX Gas Hill

PAGE 23 OF 25

LAB BLANK	<u>Units</u>
2.0 U	μg/L
1.0 U	μg/L
1.0 U	μg/L
1.0 U	μg/L
1.0 U	μg/L
1.0 U	μg/L
1.0 U	μg/L
1.0 U	μg/L
1.0 U	μg/L
1.0 U	μg/L
50	μg/L
51.5	μg/L
103	8
65-129	%
08/07/99	
	2.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U

REPORT # : JR7920

DATE REPORTED: August 23, 1999
REFERENCE: NO255/CTO101
PROJECT NAME: NAS JAX Gas Hill

PAGE 24 OF 25

EPA METHOD 5030/8021 -		
VOLATILE ORGANICS	LAB BLANK	<u>Units</u>
Methyl tert-butyl ether	2.0 U	μg/L
Benzene	1.0 U	$\mu g/L$
Toluene	1.0 U	$\mu { m g}/{ m L}$
Chlorobenzene	1.0 U	μg/L
Ethylbenzene	1.0 U	μ g/L
m-Xylene & p-Xylene	1.0 U	$\mu { m g}/{ m L}$
o-Xylene	1.0 U	μg/L
1,3-Dichlorobenzene	1.0 U	μ g/L
1,4-Dichlorobenzene	1.0 U	μg/L
1,2-Dichlorobenzene	1.0 U	$\mu extsf{g}/ extsf{L}$
Surrogate (Bromofluorobenzene)		
Surrogate Expected Value	50	μg/L
Surrogate Reported Value	61	μg/L
Surrogate Percent Recovery	122	μ9/ 1 %
Surrogate Control Limits	65-129	. %
Date Analyzed	08/09/99	J

REPORT # : JR7920

DATE REPORTED: August 23, 1999
REFERENCE : NO255/CTO101
PROJECT NAME : NAS JAX Gas Hill

PAGE 25 OF 25

QUALITY CONTROL DATA

	% RECOVERY	LCS TARGET	ACCEPT	% RPD	ACCEPT
<u>Parameter</u>	MS/MSD/LCS	μ g/L	<u>LIMITS</u>	MS/MSD	<u>LIMITS</u>
EPA Method 602/6230D/8020/8	021				
Benzene	*/ */ 97	20	60-138	<1	17
Toluene	#54/ 72/106	20	57-138	#28	16
Ethylbenzene	*/ */105	20	49-144	<1	17
o-Xylene	*/ */105	. 20	50-151	<1	17
EPA Method 8310					
Naphthalene	63/ 55/ 70	10	22-130	14	20
Acenaphthene	67/ 78/121	10	14-163	15	19
Benzo(a) pyrene	84/ 88/ 96	1	33-137	5	36
Benzo(g,h,i)perylene	78/ 80/ 90	2	36-135	2	34
Total Metals					
Lead, 3010/6010	105/107/105	1	68-126	. 2	19

NOTE: Pb LCS target units are mg/L

Environmental Conservation Laboratories Comprehensive QA Plan #960038

- * = MS/MSD/RPD unavailable due to high original sample concentration.
- < = Less Than</pre>
- MS = Matrix Spike
- MSD = Matrix Spike Duplicate
- LCS = Laboratory Control Standard
- RPD = Relative Percent Difference

This report shall not be reproduced except in full, without the written approval of the laboratory. Results for these procedures apply only to the samples as submitted.

ENVIRONMENTAL CONSERVATION LABORATORIES

QSARF#<u>\$\psi_3943</u> \$\rmatheta_\psi_6

4810 Executive Park Court, Suite 211 10207 General Drive Jacksonville, Florida 32216-6069

Orlando, Florida 32824

Ph. (904) 296-3007 • Fax (904) 296-6210 Ph. (407) 826-5314 • Fax (407) 850-6945

PROJECT REF	ERENCE		CIV	PROJE	¢T NO.		P.O. NUMBER	<u> </u>	_				INC		этрс	AF	' NO.: 9	00038	3G/U	C	HA	IN C)FC	:US	ΓΟΓ	DY F	EC	CORD
GAB H	MU NA	XACE	101		0.	55						MAT	RIX T	YPE					REQU	JIRED /	ANALYS	ıs			PA	GE		OF /
(State)	FRENCE FILL NA SAMPLERIS M.DA	tiel E	. PA	KK	er	FASO	70428/00 428/00 DALK	04g 276	<i>b</i> /	7	\int	7	Solvent, elc.)		77	7	60,00	v /	7			7	Γ_/	Γ	T	Ø	STANE	ARD RT
Teh	atech	MUS. 1	nc.	CLIEN	M &O	CT MANA	IGER A1 16	/	7 /	/ /	SOILSOLIDSEE	/ _{\$} /			100	/ ç	$\langle \rangle \langle \tilde{S} \rangle$		/					/	/	i þ	DELIVE	ERY
I CLIENT ADDRI	ESS (CITY STATE					<u>, </u>	onuc	—-/ ₄	5/g	/]	' / ,	2000	2/	\ / /	/ /	,	/		/	. /	/		EXPED DELIVE	ITED F RY (su	REPORT urcharge)
JAC	KSONVIL	ie, Fi	<u> </u>	322	56			LOE WATE	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1 WA O	<u> </u> 3	' /	/ /	ں/ھا	63/	\Z^*		/	/	/	/	/	/				
	SAM	PLE						To later	§/¿			\§	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	新林	Na	• 0	HNOB	>R#SI	= 	A TIN	C	(/	√ ՝	Date Du	e:		
STATION	DATE		GRAB				NTIFICATION	/\$ /§	\ <u>\$</u>		/g/\s) {	13/8	\$ 1	7 (1-0)		NUMBER	# CONT	AINER	SSUBA	MITTED					REMAR	KS	
1	080299	0958	/ /		MSI	-159	7-GH-09-	42/1	_			Ш		2) 1		1										_	
2	280299	1020	- 1 /		MAST	-159-	GH-103-Q	1 1						2	1		1							COC	H	039	46	
3	Q8Q299	1205	J_{f}		NAST.	159-	GH-16-12	/ 1						2												- 01	16	
4	080299	1235					GH-Q2-0					П		12			1											
5	80299	1540	V ,		NAS:	F-159.	6H-19-X			П				2	1		1						\vdash					
6	080299	1555	1				GH-13-10			Ħ	_	\Box	_	2		\top	1		7									
7	080299	1728	1				GH-1Q-0			H	\top	\Box	+	12	 '	\dagger	† †		$\neg +$	\dashv			 					
8	980299	1740	1				GH-17-01		\vdash	H	+	H	╢-	1	+ ;	+	+		-+				 	 				
	080299	80000							┥	\vdash	+	+	-	2	1 1	+	1		_				 -	\vdash				
9		dada			W-13.7.	1576	SH-DUP2-01	1 1	┝	╢		H	-	+	 ! -	+	1 -		+				<u> </u>	<u> </u>				
10	272899		-4		TK	1131	ANK	+ -	 	$\left - \right $		\mathbb{H}	1	<u> 2</u>	-	-			_				<u> </u>	 				
11								++	-	Н	_	+	\perp	<u> </u>	_	\downarrow		\perp	_					<u> </u>				
12										Ц		Ш	1	ļ	_	_												
13										Ц		Ш												İ				
14							1			$ \ $																	-	
SAMPLE KIT PI		ANDO		DATE	Ť	ME	REMINOUSHED	٠ .	NATE	JRE)	(11		¢	13/9°	9	TIME		VED B	Y: (SIGI	NATURE)				DATE		TIME
	BY: (SIGNATURE			DATE	- 	ME	RECEIVED BY:		IRE)		30	<u>u</u>			DATE	_	0735 TIME) IIISH	ED BY:	(SIGNA	TI IDE\				DATE		TIME
	,	,						J. J. J. J. J. J. J. J. J. J. J. J. J. J	,					i		ı	11111		201011	LU 01.	(SIGIVA	rone)				DATE	ĺ	IIME
RECEIVED BY	(SIGNATURE)			DATE	T	ME	RELINQUISHED	BY: (SIGI	NATU	JRE)					DATE		TIME	RECEI	/ED B	Y: (SIGI	NATURE)				DATE		TIME
RECEIVED FOR	R LABORATORY BY	(: (SIGNATURE)	DATE 8/3	199	7 7.	<u>3</u> 5	CUSTODY INT	ACT		9))		REMA	RKS											<u> </u>		

Environmental Conservation Laboratories, Inc.

4810 Executive Park Court, Suite 211 Jacksonville, Florida 32216-6069 904 / 296-3007 Fax 904 / 296-6210 www.encolabs.com

DHRS Certification No. E82277

CASE NARRATIVE

Date:

August 24, 1999

Client:

Tetra Tech NUS, Inc.

Project #:

N0255 / CTO101

Lab ID:

JR7920

Overview

All samples submitted were analyzed by Environmental Conservation Laboratories, Inc. in accordance with the methods referenced in the laboratory report. Any particular difficulties encountered during sample handling by Environmental Conservation Laboratories, Inc. will be discussed in the QC Remarks section below.

Nine aqueous samples and one trip blank were received on August 3, 1999 in good condition on wet ice. No discrepancies were noted between the Chain of Custody and the containers. Samples were analyzed for the parameters as listed on the Chain of Custody.

All samples were extracted and analyzed within method-specified holding times.

Quality Control Remarks

In the 8021 analyses, one component exhibited RPD's and recoveries outside of established limits: toluene. Additionally, matrix spike and spike duplicate (MS/MSD) recoveries were unavailable due to the high concentrations present in the sample used as the original. Recoveries for both the toluene matrix spike and spike duplicate trended low due to a matrix-related effect, and the data was released without qualification. Laboratory control standard recoveries were within control limits for all spiked constituents.

Other Comments

Quality assurance acceptance limits for surrogates, matrix spikes, matrix spike duplicates and laboratory control limits are established in-house based on historical data.

The analytical data presented in this report are consistent with the methods as referenced in the analytical report. Any exceptions or deviations are noted in the QC remarks section of this narrative. Should there be any questions regarding this package, please feel free to contact the undersigned for additional information.

Released By:

Environmental Conservation Laboratories, Inc.

Richard E. Øamp, II Laboratory Manager

comple no	run number	parameter	method	units	idl	mdl	ordi oral	dil factor	net moiet
sample_no NASJ-159-GH-02-01	run_number 1	Lead	3010/6010			mui	0.005	1	pct_moist
NASJ-159-GH-02-01	1	Naphthalene	3510/8310	_	0.000	0.2	0.5	1	
NASJ-159-GH-02-01	1	Acenaphthylene	3510/8310	-		0.1	1	1	
NASJ-159-GH-02-01	1	1-Methylnaphthalene	3510/8310	_		0.1	1	1	
NASJ-159-GH-02-01	1	2-Methylnaphthalene	3510/8310	_		0.2	1	1	
NASJ-159-GH-02-01	1	Acenaphthene	3510/8310	_		0,2	0.5	1	
NASJ-159-GH-02-01	1	Fluorene	3510/8310	ug/L		0.04	0.1	. 1	
NASJ-159-GH-02-01	1	Phenanthrene	3510/8310	ug/L		0.04	1	1	
NASJ-159-GH-02-01	1	Anthracene	3510/8310	ug/L		0.03	0.05	1	
NASJ-159-GH-02-01	1	Fluoranthene	3510/8310	ug/L		0.04	0.1	1	
NASJ-159-GH-02-01	1	Pyrene	3510/8310	ug/L		0.04	0.05	1	
NASJ-159-GH-02-01	1	Benzo(a)anthracene	3510/8310	ug/L		0.02	0.05	1	
NASJ-159-GH-02-01	1	Chrysene	3510/8310	ug/L		0.02	0.05	1	
NASJ-159-GH-02-01	1	Benzo(b)fluoranthene	3510/8310	ug/L		0.06	0.1	1	
NASJ-159-GH-02-01	1	Benzo(k)fluoranthene	3510/8310	_		0.03	0.05	1	
NASJ-159-GH-02-01	1	Benzo(a)pyrene	3510/8310	-		0.03	0.05	1	
NASJ-159-GH-02-01	1	Dibenzo(a,h)anthracene				0.07	0.1	1	
NASJ-159-GH-02-01	1 .	Benzo(g,h,i)perylene	3510/8310	_		0.07	0.1	1	
NASJ-159-GH-02-01	1	Indeno(1,2,3-cd)pyrene	3510/8310	-		0.02	0.05	1	
NASJ-159-GH-02-01	1	P-Terphenyl	3510/8310	%				1	
NASJ-159-GH-02-01	1	Methyl tert-butyl ether	5030/8021	_		1.5	10	5	
NASJ-159-GH-02-01	1	Benzene	5030/8021	_		1	5	5	
NASJ-159-GH-02-01	1	Toluene	5030/8021	_		2	5	5	
NASJ-159-GH-02-01	1	Chlorobenzene	5030/8021	_		2	5	5	
NASJ-159-GH-02-01	1	Ethylbenzene	5030/8021	-		1	5	5	
NASJ-159-GH-02-01	1	m-Xylene & p-Xylene	5030/8021	_		1.5	5	. 5	
NASJ-159-GH-02-01	1	o-Xylene	5030/8021	-		1	5 5	5 5	
NASJ-159-GH-02-01	1	1,3-Dichlorobenzene	5030/8021	-		3 2	5	5	
NASJ-159-GH-02-01	1	1,4-Dichlorobenzene	5030/8021	-		3	5 5	5	
NASJ-159-GH-02-01	1	1,2-Dichlorobenzene	5030/8021	ug/L %		3	5	5	
NASJ-159-GH-02-01	. 1	Bromofluorobenzene	5030/8021	70					
NASJ-159-GH-03-01	1	Lead	3010/6010	mg/L	0.003		0.005	1	
NASJ-159-GH-03-01	1	Naphthalene	3510/8310	ug/L		0.2	0.5	1	
NASJ-159-GH-03-01	1	Acenaphthylene	3510/8310	ug/L		0.1	1	1	
NASJ-159-GH-03-01	1	1-Methylnaphthalene	3510/8310	ug/L		0.1	1	1	
NASJ-159-GH-03-01	1	2-Methylnaphthalene	3510/8310	ug/L		0.2	1	1	
NASJ-159-GH-03-01	1	Acenaphthene	3510/8310	ug/L		0.2	0.5	1	
NASJ-159-GH-03-01	1	Fluorene	3510/8310	ug/L		0.04	0.1	1	
NASJ-159-GH-03-01	1	Phenanthrene	3510/8310	ug/L		0.04	1	1	
NASJ-159-GH-03-01	1	Anthracene	3510/8310	•		0.03	0.05	1	
NASJ-159-GH-03-01	1	Fluoranthene	3510/8310	_		0.04	0.1	1	
NASJ-159-GH-03-01	1	Pyrene	3510/8310	-		0.04	0.05	1	
NASJ-159-GH-03-01	1	Benzo(a)anthracene	3510/8310	•		0.02	0.05	1	
NASJ-159-GH-03-01	1	Chrysene	3510/8310	-		0.02	0.05	1	
NASJ-159-GH-03-01	1 ,	Benzo(b)fluoranthene	3510/8310			0.06	0.1	1	•
NASJ-159-GH-03-01	1	Benzo(k)fluoranthene	3510/8310	-		0.03	0.05	1	
NASJ-159-GH-03-01	1	Benzo(a)pyrene	3510/8310			0.03	0.05	1	
NASJ-159-GH-03-01	1	Dibenzo(a,h)anthracene				0.07	0.1	1	
NASJ-159-GH-03-01	1	Benzo(g,h,i)perylene	3510/8310	-		0.07	0.1	1	
NASJ-159-GH-03-01	1	Indeno(1,2,3-cd)pyrene	3510/8310	_		0.02	0.05	1 1	
NASJ-159-GH-03-01	1	P-Terphenyl	3510/8310	%		0.3	2	1	
NASJ-159-GH-03-01	1	Methyl tert-butyl ether	5030/8021	-		0.3	2	1	
NASJ-159-GH-03-01	1	Benzene	5030/8021	_		0.2	1 1	1	
NASJ-159-GH-03-01	1	Toluene	5030/8021	_		0.4	1	1	
NASJ-159-GH-03-01	1	Chlorobenzene	5030/8021	_		0.4	1 .	1	
NASJ-159-GH-03-01	1	Ethylbenzene	5030/8021	_		0.2	1	1	
NASJ-159-GH-03-01	1	m-Xylene & p-Xylene	5030/8021 5030/8021			0.3	1	1	
NASJ-159-GH-03-01	1	o-Xylene	5030/8021	_		0.2	1	1	
NASJ-159-GH-03-01	1	1,3-Dichlorobenzene	5030/8021	_		0.4	1	1	
NASJ-159-GH-03-01	1	1,4-Dichlorobenzene 1,2-Dichlorobenzene	5030/8021	-		0.6	1	1	
NASJ-159-GH-03-01	1	Bromofluorobenzene	5030/8021	ug/L %		5.0	'	1	
NASJ-159-GH-03-01	1	DIOMONDODENZENE	JUJU/002 I	70				·	

NASJ-159-GH-09-01	1	Lead	3010/6010 mg/L	0.003	0.005	1
NASJ-159-GH-09-01	1	Naphthalene	3510/8310 ug/L	0.2	0.5	1
NASJ-159-GH-09-01	1	Acenaphthylene	3510/8310 ug/L	0.1	1	1
NASJ-159-GH-09-01	1	1-Methylnaphthalene	3510/8310 ug/L	0.1	1	1
NASJ-159-GH-09-01	1	2-Methylnaphthalene	3510/8310 ug/L	0.2	1	1
NASJ-159-GH-09-01	1	Acenaphthene	3510/8310 ug/L	0.2	0.5	1
NASJ-159-GH-09-01	1	Fluorene	3510/8310 ug/L	0.04	0.1	1
NASJ-159-GH-09-01	1	Phenanthrene	3510/8310 ug/L	0.04	1	1
NASJ-159-GH-09-01	1	Anthracene	3510/8310 ug/L	0.03	0.05	1
	1	Fluoranthene	3510/8310 ug/L	0.03	0.00	1
NASJ-159-GH-09-01	1		_		0.05	1
NASJ-159-GH-09-01		Pyrene	3510/8310 ug/L	0.04		
NASJ-159-GH-09-01	1	Benzo(a)anthracene	3510/8310 ug/L	0.02	0.05	1
NASJ-159-GH-09-01	1	Chrysene	3510/8310 ug/L	0.02	0.05	1
NASJ-159-GH-09-01	1	Benzo(b)fluoranthene	3510/8310 ug/L	0.06	0.1	1
NASJ-159-GH-09-01	1	Benzo(k)fluoranthene	3510/8310 ug/L	0.03	0.05	1
NASJ-159-GH-09-01	1	Benzo(a)pyrene	3510/8310 ug/L	0.03	0.05	1
NASJ-159-GH-09-01	1	Dibenzo(a,h)anthracene	3510/8310 ug/L	0.07	0.1	1
NASJ-159-GH-09-01	1	Benzo(g,h,i)perylene	3510/8310 ug/L	0.07	0.1	1
NASJ-159-GH-09-01	1	Indeno(1,2,3-cd)pyrene	3510/8310 ug/L	0.02	0.05	1
NASJ-159-GH-09-01	1	P-Terphenyl	3510/8310 %			1
NASJ-159-GH-09-01	. 1	Methyl tert-butyl ether	5030/8021 ug/L	0.3	2	1
NASJ-159-GH-09-01	1	Benzene	5030/8021 ug/L	0.2	1	1
NASJ-159-GH-09-01	1	Toluene	5030/8021 ug/L	0.4	1	1
NASJ-159-GH-09-01	1	Chlorobenzene	5030/8021 ug/L	0.4	1	1
NASJ-159-GH-09-01	1	Ethylbenzene	5030/8021 ug/L	0.2	i	1
	1	m-Xylene & p-Xylene	5030/8021 ug/L	0.3	i	1
NASJ-159-GH-09-01	1		5030/8021 ug/L	0.2	1	1
NASJ-159-GH-09-01		o-Xylene			1	1
NASJ-159-GH-09-01	1	1,3-Dichlorobenzene	5030/8021 ug/L	0.6		
NASJ-159-GH-09-01	1	1,4-Dichlorobenzene	5030/8021 ug/L	0.4	1	1
NASJ-159-GH-09-01	1	1,2-Dichlorobenzene	5030/8021 ug/L	0.6	1	1
NASJ-159-GH-09-01	1 .	Bromofluorobenzene	5030/8021 %			1
NAS I 150 GH-10-01	1	l ead	3010/6010 mg/l	0.003	0.005	1
NASJ-159-GH-10-01	1	Lead Naphthalana	3010/6010 mg/L		0.005	1
NASJ-159-GH-10-01	1	Naphthalene	3510/8310 ug/L	0.2	0.5	1
NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1	Naphthalene Acenaphthylene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1	0.5 1	1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene	3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1	0.5 1 1	1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene	3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2	0.5 1 1 1	1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene	3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2	0.5 1 1 1 0.5	1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene	3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04	0.5 1 1 1 0.5 0.1	1 1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene	3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04	0.5 1 1 1 0.5 0.1	1 1 1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene	3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04	0.5 1 1 0.5 0.1 1 0.05	1 1 1 1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene	3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04	0.5 1 1 1 0.5 0.1	1 1 1 1 1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene	3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04	0.5 1 1 0.5 0.1 1 0.05	1 1 1 1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04	0.5 1 1 0.5 0.1 1 0.05 0.1	1 1 1 1 1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05	1 1 1 1 1 1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05	1 1 1 1 1 1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02 0.02 0.06	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02 0.02 0.02 0.06 0.03	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.02 0.06 0.03 0.03	0.5 1 1 0.5 0.1 1 0.05 0.01 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.02 0.06 0.03 0.03 0.03	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.04 0.04 0.03 0.04 0.04 0.02 0.02 0.06 0.03 0.03 0.03	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.02 0.06 0.03 0.03 0.03	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07 0.07 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.06 0.03 0.03 0.07 0.07 0.02 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene	3510/8310 ug/L 3510/8310 ug/L 5030/8021 ug/L 5030/8021 ug/L 5030/8021 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.06 0.03 0.03 0.07 0.07 0.02 0.02 0.04 0.04 0.03	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene	3510/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.06 0.03 0.03 0.07 0.07 0.07 0.02 0.4 0.4 0.2 0.3	0.5 1 1 0.5 0.1 0.05 0.05 0.05 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.06 0.03 0.03 0.07 0.07 0.02 0.02 0.04 0.04 0.03	0.5 1 1 0.5 0.1 0.05 0.05 0.05 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene	3510/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L 350/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.06 0.03 0.03 0.07 0.07 0.07 0.02 0.4 0.4 0.2 0.3	0.5 1 1 0.5 0.1 0.05 0.05 0.05 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.06 0.03 0.07 0.07 0.07 0.02 0.3 0.2 0.4 0.4 0.2 0.3 0.2 0.4 0.4 0.2 0.3 0.2 0.3 0.2 0.4 0.4 0.2	0.5 1 1 0.5 0.1 0.05 0.05 0.05 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 0-Xylene 1,3-Dichlorobenzene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.06 0.03 0.07 0.07 0.07 0.02 0.3 0.2 0.4 0.4 0.2 0.3 0.2 0.6	0.5 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-10-01 NASJ-159-GH-10-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	3510/8310 ug/L 35030/8021 ug/L 5030/8021 ug/L 5030/8021 ug/L 5030/8021 ug/L 5030/8021 ug/L 5030/8021 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02 0.3 0.2 0.4 0.4 0.2 0.3 0.2 0.4 0.4 0.2 0.3 0.2 0.4 0.4 0.2 0.3 0.2 0.4 0.4 0.2 0.3 0.2 0.4 0.4 0.4 0.2 0.3	0.5 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

NASJ-159-GH-13-01	1	Lead	3010/6010 mg/L	0.003	0.005	1
NASJ-159-GH-13-01	1	Naphthalene	3510/8310 ug/L	0.2	0.5	1
NASJ-159-GH-13-01	1	Acenaphthylene	3510/8310 ug/L	0.1	1	1
NASJ-159-GH-13-01	1	1-Methylnaphthalene	3510/8310 ug/L	0.1	1	1
NASJ-159-GH-13-01	1	2-Methylnaphthalene	3510/8310 ug/L	0.2	1	1
NASJ-159-GH-13-01	1	Acenaphthene	3510/8310 ug/L	0.2	0.5	1
NASJ-159-GH-13-01	1	Fluorene	3510/8310 ug/L	0.04	0.1	1
NASJ-159-GH-13-01	1	Phenanthrene	3510/8310 ug/L	0.04	1	1
NASJ-159-GH-13-01	1	Anthracene	3510/8310 ug/L	0.03	0.05	1
	1	Fluoranthene	3510/8310 ug/L	0.04	0.00	1
NASJ-159-GH-13-01	1		•			1
NASJ-159-GH-13-01		Pyrene	3510/8310 ug/L	0.04	0.05	
NASJ-159-GH-13-01	1	Benzo(a)anthracene	3510/8310 ug/L	0.02	0.05	1
NASJ-159-GH-13-01	1	Chrysene	3510/8310 ug/L	0.02	0.05	1
NASJ-159-GH-13-01	1	Benzo(b)fluoranthene	3510/8310 ug/L	0.06	0.1	1
NASJ-159-GH-13 - 01	1	Benzo(k)fluoranthene	3510/8310 ug/L	0.03	0.05	1
NASJ-159-GH-13-01	1	Benzo(a)pyrene	3510/8310 ug/L	0.03	0.05	1
NASJ-159-GH-13-01	1	Dibenzo(a,h)anthracene	3510/8310 ug/L	0.07	0.1	1
NASJ-159-GH-13-01	1	Benzo(g,h,i)perylene	3510/8310 ug/L	0.07	0.1	1
NASJ-159-GH-13-01	1	Indeno(1,2,3-cd)pyrene	3510/8310 ug/L	0.02	0.05	1
NASJ-159-GH-13-01	1	P-Terphenyl	3510/8310 %			1
NASJ-159-GH-13-01	1	Methyl tert-butyl ether	5030/8021 ug/L	0.3	2	1
NASJ-159-GH-13-01	1	Benzene	5030/8021 ug/L	0.2	1	1
NASJ-159-GH-13-01	1	Toluene	5030/8021 ug/L	0.4	1	1
NASJ-159-GH-13-01	1	Chlorobenzene	5030/8021 ug/L	0.4	1	1
NASJ-159-GH-13-01	i	Ethylbenzene	5030/8021 ug/L	0.2	i	1
NASJ-159-GH-13-01	1	m-Xylene & p-Xylene	5030/8021 ug/L	0.3	1	. 1
	1	o-Xylene	5030/8021 ug/L	0.2	1	1
NASJ-159-GH-13-01	1		_	0.6	1	1
NASJ-159-GH-13-01		1,3-Dichlorobenzene	•		1	1.
NASJ-159-GH-13-01	1	1,4-Dichlorobenzene	5030/8021 ug/L	0.4		
NASJ-159-GH-13-01	1	1,2-Dichlorobenzene	5030/8021 ug/L	0.6	1	1
NASJ-159-GH-13-01	1	Bromofluorobenzene	5030/8021 %			1
			0040/0040 //	0.000	0.005	
NASJ-159-GH-16-01	1	Lead	3010/6010 mg/L		0.005	1
NASJ-159-GH-16-01	1	Naphthalene	3510/8310 ug/L	0.2	0.5	1
	1 1	Naphthalene Acenaphthylene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1	0.5 1	1 1
NASJ-159-GH-16-01	1 1 1	Naphthalene	3510/8310 ug/L	0.2 0.1 0.1	0.5 1 1	1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1	Naphthalene Acenaphthylene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1	0.5 1	1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene	3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1	0.5 1 1	1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene	3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2	0.5 1 1 1	1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene	3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2	0.5 1 1 1 0.5	1 1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene	3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04	0.5 1 1 1 0.5 0.1	1 1 1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene	3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04	0.5 1 1 1 0.5 0.1	1 1 1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04	0.5 1 1 0.5 0.1 1 0.05	1 1 1 1 1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05	1 1 1 1 1 1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.04	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05	1 1 1 1 1 1 1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.2 0.2 0.04 0.03 0.04 0.04 0.04 0.02 0.02 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.2 0.2 0.04 0.03 0.04 0.04 0.02 0.02 0.02 0.06 0.03	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.2 0.2 0.04 0.03 0.04 0.04 0.02 0.02 0.06 0.03 0.03	0.5 1 1 0.5 0.1 1 0.05 0.01 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07	0.5 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.02 0.06 0.03 0.03 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07	0.5 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.06 0.03 0.03 0.07 0.07 0.07 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.06 0.03 0.03 0.07 0.07 0.07 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.04 0.04 0.03 0.04 0.02 0.06 0.03 0.03 0.07 0.07 0.07 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene	3510/8310 ug/L 350/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07 0.02 0.02	0.5 1 1 0.5 0.1 1 0.05 0.01 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.06 0.03 0.03 0.07 0.07 0.02 0.02	0.5 1 1 0.5 0.1 1 0.05 0.01 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.04 0.02 0.06 0.03 0.07 0.07 0.07 0.07 0.02 0.4 0.4 0.4 0.2 0.3	0.5 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 0-Xylene 1,3-Dichlorobenzene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.06 0.03 0.07 0.07 0.07 0.02 0.4 0.4 0.2 0.3 0.04	0.5 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	3510/8310 ug/L 35030/8021 ug/L 5030/8021 ug/L 5030/8021 ug/L 5030/8021 ug/L 5030/8021 ug/L 5030/8021 ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.06 0.03 0.07 0.07 0.07 0.02 0.4 0.4 0.2 0.4 0.4	0.5 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-16-01 NASJ-159-GH-16-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 0-Xylene 1,3-Dichlorobenzene	3510/8310 ug/L 3510/8310 ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.06 0.03 0.07 0.07 0.07 0.02 0.4 0.4 0.2 0.3 0.04	0.5 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

NASJ-159-GH-17-01	1	Lead	3010/6010 mg	•		0.005	1
NASJ-159-GH-17-01	1	Naphthalene	3510/8310 ug	ı/L	0.2	0.5	1
NASJ-159-GH-17-01	1	Acenaphthylene	3510/8310 ug	/L	0.1	1	1
NASJ-159-GH-17-01	1	1-Methylnaphthalene	3510/8310 ug	/L	0.1	1	1
NASJ-159-GH-17-01	1	2-Methylnaphthalene	3510/8310 ug	ı/L	0.2	1	1
NASJ-159-GH-17-01	1	Acenaphthene	3510/8310 ug	ı/L	0.2	0.5	1
NASJ-159-GH-17-01	1	Fluorene	3510/8310 ug	ı/L	0.04	0.1	1
NASJ-159-GH-17-01	1	Phenanthrene	3510/8310 ug	ı/L	0.04	1	1
NASJ-159-GH-17-01	1	Anthracene	3510/8310 ug	ı/L	0.03	0.05	1
NASJ-159-GH-17-01	1	Fluoranthene	3510/8310 ug		0.04	0.1	1
NASJ-159-GH-17-01	1	Pyrene	3510/8310 ug		0.04	0.05	1
NASJ-159-GH-17-01	1	Benzo(a)anthracene	3510/8310 ug		0.02	0.05	1
NASJ-159-GH-17-01	1	Chrysene	3510/8310 ug		0.02	0.05	1
NASJ-159-GH-17-01	i	Benzo(b)fluoranthene	3510/8310 ug		0.06	0.1	1
NASJ-159-GH-17-01	1	Benzo(k)fluoranthene	3510/8310 ug		0.03	0.05	1
	1	Benzo(a)pyrene	3510/8310 ug		0.03	0.05	1
NASJ-159-GH-17-01	1		-			0.03	1
NASJ-159-GH-17-01		Dibenzo(a,h)anthracene	_		0.07		-
NASJ-159-GH-17-01	. 1	Benzo(g,h,i)perylene	3510/8310 ug		0.07	0.1	1
NASJ-159-GH-17-01	1	Indeno(1,2,3-cd)pyrene	3510/8310 ug		0.02	0.05	1
NASJ-159-GH-17-01	1	P-Terphenyl	3510/8310 %			_	1
NASJ-159-GH-17-01	1	Methyl tert-butyl ether	5030/8021 ug		0.3	2	1
NASJ-159-GH-17-01	1	Benzene	5030/8021 ug		0.2	1	1
NASJ-159-GH-17-01	1	Toluene	5030/8021 ug	ı/L	0.4	. 1	1
NASJ-159-GH-17-01	1	Chlorobenzene	.5030/8021 ug	ı/L	0.4	<u>.</u> 1	1
NASJ-159-GH-17-01	1	Ethylbenzene	5030/8021 ug	ı/L	0.2	1	1
NASJ-159-GH-17-01	1	m-Xylene & p-Xylene	5030/8021 ug	ı/L	0.3	· 1	1
NASJ-159-GH-17-01	1	o-Xylene	5030/8021 ug	ı/L	0.2	1	1
NASJ-159-GH-17-01	1	1,3-Dichlorobenzene	5030/8021 ug	ı/L	0.6	1	1
NASJ-159-GH-17-01	1	1,4-Dichlorobenzene	5030/8021 ug	ı/L	0.4	1	1
NASJ-159-GH-17-01	1	1.2-Dichlorobenzene	5030/8021 ug		0.6	1	1
NASJ-159-GH-17-01	1	Bromofluorobenzene	5030/8021 9				1
MA30-109-G11-17-01	•						
		Lead	3010/6010 mg	a/L 0.003		0.005	1
NASJ-159-GH-19-01	1		3010/6010 mg	-	0.2		
NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1	Naphthalene	3510/8310 ug	/L	0.2 0.1	0.5	1
NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1	Naphthalene Acenaphthylene	3510/8310 ug 3510/8310 ug	i/L i/L	0.1	0.5 1	1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene	3510/8310 ug 3510/8310 ug 3510/8310 ug	/L /L /L	0.1 0.1	0.5 1 1	1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene	3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug	//L //L //L //L	0.1 0.1 0.2	0.5 1 1 1	1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene	3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug	//L //L //L //L //L	0.1 0.1 0.2 0.2	0.5 1 1 1 0.5	1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene	3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug	//L //L //L //L //L //L	0.1 0.1 0.2 0.2 0.04	0.5 1 1 1 0.5 0.1	1 1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene	3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug	//L //L //L //L //L //L	0.1 0.1 0.2 0.2 0.04 0.04	0.5 1 1 1 0.5 0.1	1 1 1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene	3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug	//L //L //L //L //L //L //L	0.1 0.2 0.2 0.04 0.04 0.03	0.5 1 1 1 0.5 0.1 1 0.05	1 1 1 1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug	/L /L /L /L /L /L /L /L /L	0.1 0.2 0.2 0.04 0.04 0.03 0.04	0.5 1 1 0.5 0.1 1 0.05 0.1	1 1 1 1 1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug	/L /L /L /L /L /L /L /L	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05	1 1 1 1 1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug	/L /L /L /L /L /L /L /L /L	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05	1 1 1 1 1 1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	3510/8310 ug 3510/8310 ug	/L /L /L /L /L /L /L /L /L	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug 3510/8310 ug	/L /L /L /L /L /L /L /L /L	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02 0.02 0.06	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	3510/8310 ug 3510/8310 ug	/L /L /L /L /L /L /L /L /L /L	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	3510/8310 ug 3510/8310 ug	/L /L /L /L /L /L /L /L /L /L	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02 0.02 0.06	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	3510/8310 ug 3510/8310 ug	/L /L /L /L /L /L /L /L /L /L /L /L	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02 0.02 0.06 0.03	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	3510/8310 ug 3510/8310 ug	/L /L /L /L /L /L /L /L /L /L /L /L	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03	0.5 1 1 0.5 0.1 1 0.05 0.01 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	3510/8310 ug 3510/8310 ug	/L /L /L /L /L /L /L /L /L /L /L /L /L	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03	0.5 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene	3510/8310 ug 3510/8310 ug	/L /L /L /L /L /L /L /L /L /L /L /L /L /	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl	3510/8310 ug 3510/8310 ug	/L /L /L /L /L /L /L /L /L /L /L /L /L /	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02 0.02 0.02 0.03 0.03 0.03 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether	3510/8310 ug 3510/8310 ug	/L /L /L /L /L /L /L /L /L /L /L /L /L /	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene	3510/8310 ug 3510/8310 ug	/L /L /L /L /L /L /L /L /L /L /L /L /L /	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene	3510/8310 ug 3510/8310 ug	//L //L //L //L //L //L //L //L //L //L	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.06 0.03 0.03 0.03 0.07 0.07 0.07 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene	3510/8310 ug 3510/8310 ug	//L //L //L //L //L //L //L //L //L //L	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.03 0.03 0.07 0.07 0.07 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene	3510/8310 ug 3510/8310 ug	//L //L //L //L //L //L //L //L //L //L	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.03 0.03 0.07 0.07 0.07 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene	3510/8310 ug 3510/8310 ug	//L //L //L //L //L //L //L //L //L //L	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.03 0.07 0.07 0.07 0.02 0.3 0.2 0.4 0.2 0.3	0.5 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene	3510/8310 ug 3510/8310 ug	//L //L //L //L //L //L //L //L //L //L	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02 0.3 0.2 0.4 0.2 0.3 0.2	0.5 1 1 0.5 0.1 0.05 0.05 0.05 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 1,3-Dichlorobenzene	3510/8310 ug 3510/8310 ug	//L //L //L //L //L //L //L //L //L //L	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02 0.3 0.2 0.4 0.2 0.3 0.2	0.5 1 1 0.5 0.1 0.05 0.05 0.05 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	3510/8310 ug 3510/8310 ug	/L /L /L /L /L /L /L /L /L /L /L /L /L /	0.1 0.2 0.2 0.04 0.04 0.04 0.02 0.06 0.03 0.07 0.07 0.07 0.02 0.3 0.2 0.4 0.2 0.3 0.2 0.4 0.4 0.2	0.5 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-19-01 NASJ-159-GH-19-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 1,3-Dichlorobenzene	3510/8310 ug 3510/8310 ug	/L /L /L /L /L /L /L /L /L /L /L /L /L /	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02 0.3 0.2 0.4 0.2 0.3 0.2	0.5 1 1 0.5 0.1 0.05 0.05 0.05 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

NASJ-159-GH-DUP2-01	1	Lead	3010/6010	_	0.003		0.005	1
NASJ-159-GH-DUP2-01	1	Naphthalene	3510/8310	-		0.2	0.5	1
NASJ-159-GH-DUP2-01	1	Acenaphthylene	3510/8310	_		0.1	1	1
NASJ-159-GH-DUP2-01	1	1-Methylnaphthalene	3510/8310	•		0.1	1	1
NASJ-159-GH-DUP2-01	1	2-Methylnaphthalene	3510/8310	ug/L		0.2	1	1
NASJ-159-GH-DUP2 - 01	1	Acenaphthene	3510/8310	ug/L		0.2	0.5	1
NASJ-159-GH-DUP2-01	1	Fluorene	3510/8310	ug/L		0.04	0.1	1
NASJ-159-GH-DUP2-01	1	Phenanthrene	3510/8310	ug/L		0.04	1	1
NASJ-159-GH-DUP2-01	1	Anthracene	3510/8310	ug/L		0.03	0.05	1
NASJ-159-GH-DUP2-01	1	Fluoranthene	3510/8310	ug/L		0.04	0.1	1
NASJ-159-GH-DUP2-01	1	Pyrene	3510/8310	ug/L		0.04	0.05	1
NASJ-159-GH-DUP2-01	1	Benzo(a)anthracene	3510/8310	ug/L		0.02	0.05	1
NASJ-159-GH-DUP2-01	1	Chrysene	3510/8310	ug/L		0.02	0.05	1
NASJ-159-GH-DUP2-01	1	Benzo(b)fluoranthene	3510/8310	ug/L		0.06	0.1	1
NA\$J-159-GH-DUP2-01	1	Benzo(k)fluoranthene	3510/8310	ug/L		0.03	0.05	1
NASJ-159-GH-DUP2-01	1	Benzo(a)pyrene	3510/8310	ug/L		0.03	0.05	1
NASJ-159-GH-DUP2-01	1	Dibenzo(a,h)anthracene	3510/8310	ug/L		0.07	0.1	1
NASJ-159-GH-DUP2-01	1	Benzo(g,h,i)perylene	3510/8310	ug/L		0.07	0.1	1
NASJ-159-GH-DUP2-01	1	Indeno(1,2,3-cd)pyrene	3510/8310	ug/L		0.02	0.05	1
NASJ-159-GH-DUP2-01	1	P-Terphenyl	3510/8310	%				1
NASJ-159-GH-DUP2-01	1	Methyl tert-butyl ether	5030/8021	ug/L		0.3	2	1
NASJ-159-GH-DUP2-01	1	Benzene	5030/8021	ug/L		0.2	1	1
NASJ-159-GH-DUP2-01	1	Toluene	5030/8021	ug/L		0.4	1	1
NASJ-159-GH-DUP2-01	1	Chlorobenzene	5030/8021	ug/L		0.4	1	1
NASJ-159-GH-DUP2-01	1	Ethylbenzene	5030/8021	ug/L		0.2	1	1
NASJ-159-GH-DUP2-01	1	m-Xylene & p-Xylene	5030/8021	ug/L		0.3	1	1
NASJ-159-GH-DUP2-01	1	o-Xylene	5030/8021	ug/L		0.2	1	1 .
NASJ-159-GH-DUP2-01	1	1,3-Dichlorobenzene	5030/8021	ug/L		0.6	1	1
NASJ-159-GH-DUP2-01	. 1	1,4-Dichlorobenzene	5030/8021	ug/L		0.4	1	1
NASJ-159-GH-DUP2-01	1	1,2-Dichlorobenzene	5030/8021	ug/L		0.6	1	1
NASJ-159-GH-DUP2-01	1	Bromofluorobenzene	5030/8021	%				1
TDIDD: 4411/		Markland Arak bank di aktaran	E000/0004			0.0		4
TRIPBLANK	1	Methyl tert-butyl ether	5030/8021	ug/L		0.3	2 1	1
TRIPBLANK	1	Benzene	5030/8021	ug/L		0.2		1
TRIPBLANK	1	Toluene		ug/L		0.4	1	1
TRIPBLANK	1	Chlorobenzene	5030/8021	ug/L		0.4	1	1
TRIPBLANK	1	Ethylbenzene	5030/8021	ug/L		0.2	1	1
TRIPBLANK	1	m-Xylene & p-Xylene		ug/L		0.3	1	1
TRIPBLANK	1	o-Xylene		ug/L		0.2	1	1
TRIPBLANK	1	1,3-Dichlorobenzene		ug/L		0.6	1.	1
TRIPBLANK	1	1,4-Dichlorobenzene		ug/L		0.4	1	1
TRIPBLANK	1	1,2-Dichlorobenzene		ug/L		0.6	1	1
TRIPBLANK	1 .	Bromofluorobenzene	5030/8021	%				1

Environmental Conservation Laboratories, Inc.

4810 Executive Park Court, Suite 211 Jacksonville, Florida 32216-6069 904 / 296-3007 Fax 904 / 296-6210 www.encolabs.com

DHRS Certification No. E82277

CLIENT : Tetra Tech NUS, Inc.

ADDRESS: 661 Anderson Dr.

Foster Plaza 7

Pittsburg, PA 15220-2745

REPORT # : JR7944

DATE SUBMITTED: August 3, 1999

DATE REPORTED : August 23, 1999

PAGE 1 OF 20

ATTENTION: Ms. Lee Leck

SAMPLE IDENTIFICATION

Samples submitted and identified by client as:

PROJECT #: N0255/CTO101

NAS JAX Gas Hill

#1	-	NASJ-159-GH-07-01	@	10:35	(08/03/99)
#2	-	NASJ-159-GH-05-01	@	10:47	(08/03/99)
#3	-	NASJ-159-GH-04-01	@	13:40	(08/03/99)
#4	-	NASJ-159-GH-06-01	@	14:55	(08/03/99)
#5	-	NASJ-159-GH-20-01	@	16:03	(08/03/99)
#6	-	NASJ-159-GH-08-01	@	16:05	(08/03/99)
#7	-	NASJ-159-GH-DUP3-01			(08/03/99)
#8	-	TRIPBLANK			(07/28/99)

PROJECT MANAGER Scott D. N

REPORT # : JR7944

DATE REPORTED: August 23, 1999
REFERENCE : N0255/CT0101
PROJECT NAME : NAS JAX Gas Hill

PAGE 2 OF 20

EPA METHOD 5030/8021 - VOLATILE ORGANICS	NASJ-159-GH-07-01	<u>Units</u>
Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene Xylene & p-Xylene Xylene	2.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	μg/L μg/L μg/L μg/L μg/L μg/L
1,4-Dichlorobenzene 1,2-Dichlorobenzene	1.0 U 1.0 U 1.0 U	μg/L μg/L μg/L
Surrogate (Bromofluorobenzene) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limits Date Analyzed	50 50.5 101 65-129 08/07/99	μg/L μg/L % %

TOTAL METALS	<u>METHOD</u>	NASJ-159-GH-07-01	<u>Units</u>
Lead Date Analyzed	3010/6010	0.0050 U 08/10/99	mg/L

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR7944

DATE REPORTED: August 23, 1999 REFERENCE: N0255/CT0101 PROJECT NAME: NAS JAX Gas Hill

PAGE 3 OF 20

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-07-01	<u>Units</u>
Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene	0.50 U 1.0 U 1.0 U 1.0 U 0.50 U 0.10 U 1.0 U 0.050 U 0.10 U 0.050 U 0.050 U 0.050 U 0.050 U 0.10 U 0.050 U 0.10 U 0.050 U 0.050 U	р р р р р р р р р р р р р р р р р р р
Surrogate (p-terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limit Date Extracted Date Analyzed	10.0 9.4 94 39-148 08/10/99 08/11/99	μg/L μg/L % %

REPORT # : JR7944

DATE REPORTED: August 23, 1999
REFERENCE : N0255/CT0101
PROJECT NAME : NAS JAX Gas Hill

PAGE 4 OF 20

EPA METHOD 5030/8021 - VOLATILE ORGANICS	NASJ-159-GH-05-01	Units
Methyl tert-butyl ether	2.0 U	μg/L
Benzene	1.0 U	μg/L
Toluene	1.0 U	μg/L
Chlorobenzene	1.0 U	μg/L
Ethylbenzene	1.0 U	μg/L
m-Xylene & p-Xylene	1.0 U	μ g/L
o-Xylene	1.0 U	μg/L
1,3-Dichlorobenzene	1.0 U	μ g/L
1,4-Dichlorobenzene	1.0 U	μg/L
1,2-Dichlorobenzene	1.0 U	μg/L
Surrogate (Bromofluorobenzene)		
Surrogate Expected Value	50	μ g/L
Surrogate Reported Value	50	μ g/L
Surrogate Percent Recovery	100	00 00
Surrogate Control Limits	65-129	8
Date Analyzed	08/07/99	
TOTAL METALS METHOD	NASJ-159-GH-05-01	Units
Lead 3010/6010 Date Analyzed	0.0060 I 08/10/99	mg/L

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR7944

DATE REPORTED: August 23, 1999 REFERENCE: N0255/CT0101 PROJECT NAME: NAS JAX Gas Hill

PAGE 5 OF 20

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-05-01	Units
Naphthalene	0.50 U 1.0 U	μg/L
Acenaphthylene	1.0 U	μg/L
1-Methylnaphthalene	1.0 U	μg/L
2-Methylnaphthalene	0.50 U	μg/L μg/L
Acenaphthene Fluorene	0.10 U	μg/L μg/L
Phenanthrene	1.0 U	μg/L
Anthracene	0.050 U	μg/L
Fluoranthene	0.10 U	μg/L
Pyrene	0.050 U	μg/L
Benzo(a)anthracene	0.050 U	μg/L
Chrysene	0.050 U	μg/L
Benzo(b) fluoranthene	0.10 U	μg/L
Benzo(k) fluoranthene	0.050 U	μg/L
Benzo(a) pyrene	0.050 U	μg/L
Dibenzo(a,h)anthracene	0.10 U	μg/L
Benzo(g,h,i)perylene	0.10 U	μg/L
Indeno(1,2,3-cd)pyrene	0.050 U	$\mu g/L$
Surrogate (p-terphenyl)		
Surrogate Expected Value	10.0	μ g/L
Surrogate Reported Value	5.3	μg/L
Surrogate Percent Recovery	53	8
Surrogate Control Limit	39-148	%
Date Extracted	08/10/99	
Date Analyzed	08/11/99	

REPORT # : JR7944

DATE REPORTED: August 23, 1999
REFERENCE: N0255/CT0101
PROJECT NAME: NAS JAX Gas Hill

PAGE 6 OF 20

EPA METHOD 5030/8021 - VOLATILE ORGANICS	NASJ-159-GH-04-01	<u>Units</u>
Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	2.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	μg/L μg/L μg/L μg/L μg/L μg/L
Surrogate (Bromofluorobenzene) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limits Date Analyzed	50 48 96 65-129 08/07/99	μg/L % %

TOTAL METALS	METHOD	NASJ-159-GH-04-01	<u>Units</u>
Lead Date Analyzed	3010/6010	0.0050 U 08/10/99	mg/L

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR7944

DATE REPORTED: August 23, 1999
REFERENCE: N0255/CT0101
PROJECT NAME: NAS JAX Gas Hill

PAGE 7 OF 20

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-04-01	<u>Units</u>
Naphthalene	0.50 U	μg/L
Acenaphthylene	1.0 U	μg/L
1-Methylnaphthalene	1.0 U	$\mu { m g}/{ m L}$
2-Methylnaphthalene	1.0 U	μg/L
Acenaphthene	0.50 U	$\mu extsf{g}/ extsf{L}$
Fluorene	0.10 U	μg/L
Phenanthrene	1.0 U	μg/L
Anthracene	0.050 U	μg/L
Fluoranthene	0.10 U	μg/L
Pyrene	0.050 U	μg/L
Benzo(a) anthracene	0.050 U	μg/L
Chrysene	0.050 U	μg/L
Benzo(b)fluoranthene	0.10 U	μg/L
Benzo(k)fluoranthene	0.050 U	μg/L
Benzo(a)pyrene	0.050 U	μg/L
Dibenzo(a,h) anthracene	0.10 U	μg/L
Benzo(g,h,i)perylene	0.10 U	μg/L
Indeno(1,2,3-cd)pyrene	0.050 U	$\mu g/L$
Surrogate (p-terphenyl)		
Surrogate Expected Value	10.0	μ g/L
Surrogate Reported Value	8.6	$\mu g/L$
Surrogate Percent Recovery	86	المرام المرام
Surrogate Control Limit	39-148	%
Date Extracted	08/10/99	
Date Analyzed	08/11/99	

REPORT # : JR7944

DATE REPORTED: August 23, 1999
REFERENCE: N0255/CT0101
PROJECT NAME: NAS JAX Gas Hill

PAGE 8 OF 20

EPA METHOD 5030/8021 - VOLATILE ORGANICS	NASJ-159-GH-06-01	<u>Units</u>
Methyl tert-butyl ether	2.0 U	μg/L
Benzene	1.0 U	$\mu { m g}/{ m L}$
Toluene	1.0 U	$\mu { m g}/{ m L}$
Chlorobenzene	1.0 U	$\mu { m g}/{ m L}$
Ethylbenzene	1.0 U	$\mu { m g}/{ m L}$
m-Xylene & p-Xylene	1.0 U	$\mu { m g/L}$
o-Xylene	1.0 U	$\mu { m g}/{ m L}$
1,3-Dichlorobenzene	1.0 U	$\mu { m g/L}$
1,4-Dichlorobenzene	1.0 U	μ g/L
1,2-Dichlorobenzene	1.0 U	$\mu exttt{g/L}$
Surrogate (Bromofluorobenzene)		
Surrogate Expected Value	50	$\mu extsf{g/L}$
Surrogate Reported Value	48.5	$\mu \mathrm{g/L}$
Surrogate Percent Recovery	97	₽ Po
Surrogate Control Limits	65-129	%
Date Analyzed	08/07/99	
TOTAL METALS METHOD	NASJ-159-GH-06-01	<u>Units</u>

TOTAL METALS	MEIHOD	NASU-139-GH-00-01	Units
Lead Date Analyzed	3010/6010	0.0050 U 08/10/99	mg/L

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR7944

DATE REPORTED: August 23, 1999
REFERENCE : N0255/CT0101
PROJECT NAME : NAS JAX Gas Hill

PAGE 9 OF 20

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-06-01	<u>Units</u>
Naphthalene	0.50 U	μ g/L
Acenaphthylene	1.0 U	μ g/L
1-Methylnaphthalene	1.0 U	$\mu exttt{g/L}$
2-Methylnaphthalene	1.0 U	$\mu exttt{g/L}$
Acenaphthene	0.50 U	μ g/L
Fluorene	0.10 U	$\mu { m g}/{ m L}$
Phenanthrene	1.0 U	μ g/L
Anthracene	0.050 U	μ g/L
Fluoranthene	0.10 U	μ g/L
Pyrene	0.050 U	μ g/L
Benzo(a)anthracene	0.050 U	μ g/L
Chrysene	0.050 U	μ g/L
Benzo(b) fluoranthene	0.10 U	μ g/L
Benzo(k)fluoranthene	0.050 U	$\mu exttt{g/L}$
Benzo(a)pyrene	0.050 U	μ g/L
Dibenzo(a,h) anthracene	0.10 U	μ g/L
Benzo(q,h,i)perylene	0.10 U	μ g/L
Indeno(1,2,3-cd)pyrene	0.050 U	μ g/L
Surrogate (p-terphenyl)		,
Surrogate Expected Value	10.0	μg/L
Surrogate Reported Value	8.9	μ g/L
Surrogate Percent Recovery	89	o/o o/o
Surrogate Control Limit	39-148	%
Date Extracted	08/10/99	
Date Analyzed	08/11/99	

REPORT # : JR7944

DATE REPORTED: August 23, 1999
REFERENCE : N0255/CT0101
PROJECT NAME : NAS JAX Gas Hill

PAGE 10 OF 20

RESULTS OF ANALYSIS

EPA METHOD 5030/8021 -

VOLATILE ORGANICS	NASJ-159-GH-20-01	<u>Units</u>
Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	2.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L
Surrogate (Bromofluorobenzene) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limits Date Analyzed	50 49.5 99 65-129 08/07/99	μg/L μg/L % %
TOTAL METALS METHOD	NASJ-159-GH-20-01	<u>Units</u>
Lead 3010/6010 Date Analyzed	0.0050 U 08/10/99	mg/L

 $^{{\}tt U}={\tt Compound}$ was analyzed for but not detected to the level shown.

REPORT # : JR7944

DATE REPORTED: August 23, 1999
REFERENCE: N0255/CT0101
PROJECT NAME: NAS JAX Gas Hill

PAGE 11 OF 20

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-20-01	<u>Units</u>
Naphthalene	0.50 U	μ g/L
Acenaphthylene	1.0 U	$\mu exttt{g/L}$
1-Methylnaphthalene	1.0 U	μ g/L
2-Methylnaphthalene	1.0 U	μ g/L
Acenaphthene	0.50 U	μ g/L
Fluorene	0.10 U	$\mu exttt{g/L}$
Phenanthrene	1.0 U	μ g/L
Anthracene	0.050 U	μ g/L
Fluoranthene	0.10 U	μ g/L
Pyrene	0.050 U	μ g/L
Benzo(a) anthracene	0.050 U	$\mu exttt{g/L}$
Chrysene	0.050 U	$\mu exttt{g/L}$
Benzo(b)fluoranthene	0.10 U	μ g/L
Benzo(k)fluoranthene	0.050 U	$\mu extsf{g}/ ext{L}$
Benzo(a)pyrene	0.050 U	μ g/L
Dibenzo(a,h)anthracene	0.10 U	μ g/L
Benzo(g,h,i)perylene	0.10 U	$\mu exttt{g/L}$
Indeno(1,2,3-cd)pyrene	0.050 U	μ g/L
Surrogate (p-terphenyl)		
Surrogate Expected Value	10.0	μ g/L
Surrogate Reported Value	7.5	μ g/L
Surrogate Percent Recovery	75	%
Surrogate Control Limit	39-148	%
Date Extracted	08/10/99	
Date Analyzed	08/11/99	

REPORT # : JR7944

DATE REPORTED: August 23, 1999
REFERENCE : N0255/CT0101
PROJECT NAME : NAS JAX Gas Hill

PAGE 12 OF 20

NASJ-159-GH-08-01	<u>Units</u>
2.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L
1.0 U	μ g/L
50 49 98 65-129 08/07/99	μg/L μg/L % %
	2.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U

TOTAL	<u>METALS</u>	METHOD	NASJ-159-GH-08-01	<u>Units</u>
Lead Date	Analyzed	3010/6010	0.0050 U 08/10/99	mg/L

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR7944

DATE REPORTED: August 23, 1999 REFERENCE: N0255/CT0101 PROJECT NAME: NAS JAX Gas Hill

PAGE 13 OF 20

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-08-01	<u>Units</u>
Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene	0.50 U 1.0 U 1.0 U 1.0 U 0.50 U 0.10 U 1.0 U 0.050 U 0.10 U 0.050 U 0.050 U 0.050 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 I 0.10 U 0.10 U	μμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμ
Surrogate (p-terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limit Date Extracted Date Analyzed	10 9.4 94 39-148 08/10/99 08/11/99	% ha\r ha\r

U = Compound was analyzed for but not detected to the level shown.

I = Analyte detected; value is between the Method Detection Level (MDL) and the Practical Quantitation Level (PQL).

REPORT # : JR7944

DATE REPORTED: August 23, 1999
REFERENCE : N0255/CT0101
PROJECT NAME : NAS JAX Gas Hill

PAGE 14 OF 20

RESULTS OF ANALYSIS

EPA METHOD 5030/8021 -

VOLATILE ORGANIC	<u>CS</u>	NASJ-159-GH-DUP3-01	<u>Units</u>
Methyl tert-buty	yl ether	2.0 U	μ g/L
Benzene		1.0 U	μg/L
Toluene		1.0 U	$\mu { m g}/{ m L}$
Chlorobenzene		1.0 U	μg/L
Ethylbenzene		1.0 U	μg/L
m-Xylene & p-Xy	lene	1.0 U	μg/L
o-Xylene		1.0 U	μg/L
1,3-Dichloroben:	zene	1.0 U	μg/L
1,4-Dichloroben:	zene	1.0 U	$\mu g/L$
1,2-Dichloroben:	zene	1.0 U	$\mu g/L$
Surrogate (Brome	ofluorobenzene)		
Surrogate Expect		50	$\mu { m g}/{ m L}$
Surrogate Reported Value		50.5	μg/L
Surrogate Percer		101	.%
Surrogate Contro		65-129	0000
Date Analyzed		08/07/99	
			•
TOTAL METALS	METHOD	NASJ-159-GH-DUP3-01	<u>Units</u>
Lead	3010/6010	0.0050 U	mg/L
Date Analyzed	2310,0010	08/10/99	

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR7944

DATE REPORTED: August 23, 1999
REFERENCE : N0255/CT0101
PROJECT NAME : NAS JAX Gas Hill

PAGE 15 OF 20

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-DUP3-01	<u>Units</u>
Naphthalene	0.50 U	μ g/L
Acenaphthylene	1.0 U	μ g/L
1-Methylnaphthalene	1.0 U	μ g/L
2-Methylnaphthalene	1.0 U	μ g/L
Acenaphthene	0.50 U	μg/L
Fluorene	0.10 U	μg/L
Phenanthrene	1.0 U	μg/L
Anthracene	0.050 U	μ g/L
Fluoranthene	0.10 U	$\mu g/L$
Pyrene	0.050 U	$\mu { m g}/{ m L}$
Benzo(a)anthracene	0.050 U	μ g/L
Chrysene	0.050 U	μ g/L
Benzo(b)fluoranthene	0.10 U	μ g/L
Benzo(k)fluoranthene	0.050 U	μ g/L
Benzo(a)pyrene	0.050 U	μ g/L
Dibenzo(a,h)anthracene	0.10 U	μg/L
Benzo(g,h,i)perylene	0.10 U	$\mu extsf{g}/ extsf{L}$
Indeno(1,2,3-cd)pyrene	0.050 U	$\mu { t g}/{ t L}$
Surrogate (p-terphenyl)		
Surrogate Expected Value	10.0	μ g/L
Surrogate Reported Value	7.6	μ g/L
Surrogate Percent Recovery	76	00000
Surrogate Control Limit	39-148	%
Date Extracted	08/10/99	
Date Analyzed	08/11/99	

REPORT # : JR7944

DATE REPORTED: August 23, 1999
REFERENCE : N0255/CT0101
PROJECT NAME : NAS JAX Gas Hill

PAGE 16 OF 20

EPA METHOD 5030/8021 - VOLATILE ORGANICS	TRIPBLANK	<u>Units</u>
Methyl tert-butyl ether	2.0 U	μg/L
Benzene	1.0 U	μg/L
Toluene	1.0 U	μg/L
Chlorobenzene	1.0 U	μg/L
Ethylbenzene	1.0 U	μg/L
m-Xylene & p-Xylene	1.0 U	μg/L
o-Xylene	1.0 U	μg/L
1,3-Dichlorobenzene	1.0 U	μg/L
1,4-Dichlorobenzene	1.0 U	μg/L
1,2-Dichlorobenzene	1.0 U	μg/L
Surrogate (Bromofluorobenzene)		
Surrogate Expected Value	50	μg/L
Surrogate Reported Value	52	μg/L
Surrogate Percent Recovery	104	%
Surrogate Control Limits	65-129	%
Date Analyzed	08/07/99	

REPORT # : JR7944

DATE REPORTED: August 23, 1999
REFERENCE: N0255/CT0101
PROJECT NAME: NAS JAX Gas Hill

PAGE 17 OF 20

EPA METHOD 5030/8021 -		
VOLATILE ORGANICS	LAB BLANK	<u>Units</u>
Methyl tert-butyl ether	2.0 U	uc /T
Benzene	1.0 U	μg/L μg/L
 		
Toluene	1.0 U	μg/L
Chlorobenzene	1.0 U	μ g/L
Ethylbenzene	1.0 U	μ g/L
m-Xylene & p-Xylene	1.0 U	$\mu { m g}/{ m L}$
o-Xylene	1.0 U	μg/L
1,3-Dichlorobenzene	1.0 U	μg/L
1,4-Dichlorobenzene	1.0 U	μg/L
1,2-Dichlorobenzene	1.0 U	μg/L
Surrogate (Bromofluorobenzen	a)	
Surrogate Expected Value	<u>50</u>	u~ /T
	- -	μg/L
Surrogate Reported Value	49	μg/L
Surrogate Percent Recovery	98	0/0 0/0
Surrogate Control Limits	65-129	%
Date Analyzed	08/07/99	

TOTAL METALS	METHOD	LAB BLANK	Units
Lead Date Analyzed	3010/6010	0.0050 U 08/10/99	mg/L

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR7944

DATE REPORTED: August 23, 1999
REFERENCE : N0255/CT0101
PROJECT NAME : NAS JAX Gas Hill

PAGE 18 OF 20

EPA METHOD 3510/8310 - PAH BY HPLC	LAB BLANK	<u>Units</u>
Naphthalene	0.50 U	μ g/L
Acenaphthylene	1.0 U	μ g/L
1-Methylnaphthalene	1.0 U	μ g/L
2-Methylnaphthalene	1.0 U	μg/L
Acenaphthene	0.50 U	μ g/L
Fluorene	0.10 U	μ g/L
Phenanthrene	1.0 U	μ g/L
Anthracene	0.050 U	μg/L
Fluoranthene	0.10 U	μg/L
Pyrene	0.050 U	μg/L
Benzo(a) anthracene	0.050 U	μg/L
Chrysene	0.050 U	μg/L
Benzo(b) fluoranthene	0.10 U 0.050 U	μg/L
Benzo(k) fluoranthene	0.050 U	μg/L
Benzo(a) pyrene	0.030 U	μg/L
Dibenzo(a,h)anthracene	0.10 U	μg/L
Benzo(g,h,i)perylene	0.10 U	μg/L
Indeno(1,2,3-cd)pyrene	0.050 0	$\mu { t g}/{ t L}$
Surrogate (p-terphenyl)		
Surrogate Expected Value	10.0	μg/L
Surrogate Reported Value	9.3	μg/L
Surrogate Percent Recovery	93	%
Surrogate Control Limit	39-148	%
Date Extracted	08/10/99	
Date Analyzed	08/11/99	
<u> -</u>		

REPORT # : JR7944

DATE REPORTED: August 23, 1999
REFERENCE: N0255/CT0101
PROJECT NAME: NAS JAX Gas Hill

PAGE 19 OF 20

EPA METHOD 5030/8021 -		
VOLATILE ORGANICS	<u>LAB</u> <u>BLANK</u>	<u>Units</u>
Methyl tert-butyl ether	2.0 U	μ g/L
Benzene	1.0 U	μ g/L
Toluene	1.0 U	μg/L
Chlorobenzene	1.0 U	μg/L
Ethylbenzene	1.0 U	μg/L
m-Xylene & p-Xylene	1.0 U	μg/L
o-Xylene	1.0 U	μg/L
1,3-Dichlorobenzene	1.0 U	$\mu g/L$
1,4-Dichlorobenzene	1.0 U	μg/L
1,2-Dichlorobenzene	1.0 U	$\mu g/L$
Surrogate (Bromofluorobenzene)		
Surrogate Expected Value	50	μg/L
Surrogate Reported Value	4.9	μg/L
Surrogate Percent Recovery	98	%
Surrogate Control Limits	65-129	%
Date Analyzed	08/07/99	

REPORT # : JR7944

DATE REPORTED: August 23, 1999
REFERENCE: N0255/CT0101
PROJECT NAME: NAS JAX Gas Hill

PAGE 20 OF 20

QUALITY CONTROL DATA

			LCS			
	% RECO	VERY	Target	ACCEPT	% RPD	ACCEPT
<u>Parameter</u>	MS/MSD	/LCS	μ g/L	<u>LIMITS</u>	MS/MSD	<u>LIMITS</u>
ED7 Mathad #020/0001	/NIAGT 150 GILO	7 011				
EPA Method 5030/8021			20	CO 120	2	7 D
Benzene	97/ 99		20	60-138	2	17
Toluene	95/ 96		20	57-138	1	16
Ethylbenzene	101/ 99		20		2	17
o-Xylene	96/ 98	/ 83	20	50-151	2	17
•				•		
EPA Method 5030/8021	(NASJ-159-GH-0	5-01,N	ASJ-159	-GH-04-01	,NASJ-159-GI	H-06-
01, NASJ-159-GH-20-01,	NASJ-159-GH-08	-01,NA	SJ-159-	GH-DUP3-0	1,TRIPBLANK	<u> </u>
Benzene	96/ 92	/ 91	20	60-138	4	_ 17
Toluene	95/ 92	/ 92	20	57-138	3	16
Ethylbenzene	100/ 95	/ 92	20	49-144	5	17
o-Xylene	94/ 92	/ 90	20	50-151	2	17
1	·					
EPA Method 3510/8310						
Naphthalene	82/ 58	/ 76	10	22-130	#34	20
Acenaphthene	82/ 64		10		#25	19
Benzo(a) pyrene	78/ 62		1	33-137	23	36
Benzo(q,h,i)perylene	72/ 56		2	36-135	25	34
Belizo (9, 11, 1 / per yrelle	72/ 30	, ,,,	۷.	20-122	23	34
Total Motals						•
Total Metals	00/00	/102	1	CO 10C	. 1	10
Lead, 3010/6010	99/ 99	/ T U3	1	68-126	<1	19

NOTE: LCS target units for Lead is mg/L

Environmental Conservation Laboratories Comprehensive QA Plan #960038

- # = The associated value failed to meet laboratory established criteria for precision.
 - = Less Than
- MS = Matrix Spike
- MSD = Matrix Spike Duplicate
- LCS = Laboratory Control Standard
- RPD = Relative Percent Difference

This report shall not be reproduced except in full, without the written approval of the laboratory. Results for these procedures apply only to the samples as submitted.

anth	A Brown	- º Da	ot Environm		CITE MA	NIACED.		N	r. Z	VIN	λ_{I}	116		T								
4	DIUWI	PAC	Of Environm	ientai	DEU IEUZ	ANAGER: T NAME:	GF	† <u>C</u>	411	1 1	IAC	TAY		SHI	PPEC) TO:				PAG	Elo	OF
			SKINNER TON	722 5/	PRUJEU I	I NAME: OJECT NO.	<u> </u>	7/	200		, (3,	777										
C	715 Por	250,	TAX, FL FAX: 904 281	3(2)6			.:	•0	<u> </u>	<u> </u>	CODE:	Clo	101		EN	CD,	(LABOR	ACKS	01/	THE	FI	<u>_</u>
				_ 00/0	P.O. NO.	:										,	(LABOR	ATORY N	IAME,	CITY)	/	
CHAIN O	F CUST	ODY	RECORD								ABOF	RATOR	RY AN	VALY	SIS							
SAMPLED B						·	SAMI	PLE		PRES.	[4]	Z	1/	/ /	7	/ /	/ /	MATER	IDAR[) TAT	□R	USH
SAMPLER S	IGNATURE:	Me	eura W. Del	le		_	TYF		MATRIX	TYPE	47 3	\$\\ \frac{1}{2}\\	-//-	-/-	/-/		\$.&\ □2	4 HR. 🗍				
							<u>ē</u>	9	¥ ¥	ETERS .	S/ 5/	60/03/	/ /	//		NUMBER	₹ ₹ RESU	LTS DUE	DATE:			
LAB NO.	DATE	TIME	SAMP	PLE IDENTIF	CATION		COMP.	GRAB	_	家		100	′//	/- /-		/₹	<u>\$</u> /					
	12029	101 5	NAST-159	7 (4 10	7 NI	·	+	$\perp \prime \downarrow$	7	17	100/2	4-4	- 		/ -			C	OMM	ENTS:	1	
	ACC 200 /	1053	150-150	2011-4	<u>+-01</u>			1	GW	1	1 1					4						
	10803471	041	NASJ-159	-6H- P	<u>5-01</u>		$\perp \perp \downarrow$		GW		1 1					4						
	08 0399 1	1340	NASJ-159	1-6H-4	<u>14-21</u>		$oxed{oxed}$	[GN	2	1 1					4						
	080399	1455	NAST-159	1-GH- Q	.6-01			√	GN	2	1 1					4		-				
	080399	1603	NASJ-15	59 - GH-	20-01	(GW	2	1 1			1		4						
	080399	1605	NAST-15	9-1-H-	N8-0	1	11	7	OW	2	1 1	 	+		1	4						
	nx 0399	1000	NASJ-15	9-611-	711D3	<i>b</i> 1		$ \dot{\gamma} $	GW	5	1 1	+ +-	++		-	4						
			TRIP BL		purj-	Δ1	+	_			1 1			_	-			 				
	ULX DT 1		IKIVBU	421 ×				\	ОТ	1	\dashv	++			-	2						
								\sqcup							<u> </u>							
			ļ				$\perp \perp \downarrow$						_									
	<u> </u>																					
				TOTAL	L NUMBE	ER OF	CON.	TAI	NERS	3 16	77					38						
MPTY BOTTLES	RELINQUISHE	D BY (SI	GNATURE)	SEAL IN	NTACT?	DATE:							BY (SIGNA	TURE)				INTACT?		ATE:07	029	9
				YES NO					72	NI	wm	CEIVED B	de				FF3	NO N	/A T	IME:	257	-
ELINDUIS/ED E	3Y (SIGNATUR	E) }	//_	SEAL IN	NTACT?	DATE:	030	19	REC	EIVED E	Y (SIG	NATURE					SEAL	INTACT?	l n	ATF.	プノオマノ	/~~
ELINQUISHED E	n W.	4	4	SEAL IN		1	74	0		EIVED E			\(\) .				YES	NO N INTACT?			7/Y	
)	// (010//////	_)			O N/A	DATE: TIME:			16		`	,						NO N		ATE: IME:		\dashv
SPECIAL	INSTRUC	MOITC	5:	-				T	LAB	ORAT	ORY	REMA	RKS:	170	7 a,	171			<u></u>			
	1 %								Brown (Le .			(JK "	1-14	17				سميسي		
AMPLE CONTAIN BRE			MANUFACTU	URER N	METHOD OF	F SHIPME	ENT: _						_ _{B1}	LL OF	LAC	DING	NO.:					
HITE-FULLY EX			SAMPLING TE							1		R LABORA	TORY						Na		340	a
ELLOW-RECEIVII INK-SAMPLERS'				NDACE	<u> </u>					BY (S	IGNATU	RE):							No.		140.	<i>"</i>
OLDENROD-SITE	MANAGERS'	COPY	1 lek 1 C	PARKER	Á				,	DATE:				TIME:			•					

Environmental Conservation Laboratories, Inc.

4810 Executive Park Court, Suite 211 Jacksonville, Florida 32216-6069 904 / 296-3007 Fax 904 / 296-6210 www.encolabs.com

DHRS Certification No. E82277

CASE NARRATIVE

Date:

August 24, 1999

Client:

Tetra Tech NUS, Inc.

Project #:

N0255 / CTO101

Lab ID:

JR7944

Overview

All samples submitted were analyzed by Environmental Conservation Laboratories, Inc. in accordance with the methods referenced in the laboratory report. Any particular difficulties encountered during sample handling by Environmental Conservation Laboratories, Inc. will be discussed in the QC Remarks section below.

Seven aqueous samples and one trip blank were received on August 3, 1999 in good condition on wet ice. No discrepancies were noted between the Chain of Custody and the containers. Samples were analyzed for the parameters as listed on the Chain of Custody.

All samples were extracted and analyzed within method-specified holding times.

Quality Control Remarks

In the 8310 analyses, two components exhibited RPD's outside of established limits: naphthalene and acenaphthene. Recoveries for both the matrix spike and matrix spike duplicate were within control limits, and the data was released without qualification.

Other Comments

Quality assurance acceptance limits for surrogates, matrix spikes, matrix spike duplicates and laboratory control limits are established in-house based on historical data.

The analytical data presented in this report are consistent with the methods as referenced in the analytical report. Any exceptions or deviations are noted in the QC remarks section of this narrative. Should there be any questions regarding this package, please feel free to contact the undersigned for additional information.

Released By:

Environmental Conservation Laboratories, Inc.

Richard E. Camp, II Laboratory Manager

		norameter	method	units	idl	mdl	ordi oral		age 1 01 4
sample_no	run_number	parameter Lead	3010/6010	mg/L	0.003	mui	0.005	uli_lactor	pct_moist
NASJ-159-GH-04-01	1	Naphthalene	3510/8310	ug/L	0.003	0.2	0.003	1	
NASJ-159-GH-04-01	1	Acenaphthylene	3510/8310	ug/L		0.2	1	1	
NASJ-159-GH-04-01	1	1-Methylnaphthalene	3510/8310	ug/L		0.1	1	1	
NASJ-159-GH-04-01 NASJ-159-GH-04-01	1	2-Methylnaphthalene	3510/8310	ug/L		0.1	1	1	
	1	Acenaphthene	3510/8310	ug/L		0.2	0.5	1	
NASJ-159-GH-04-01	1	Fluorene	3510/8310	ug/L ug/L		0.04	0.3	1	
NASJ-159-GH-04-01		Phenanthrene		ug/L ug/L		0.04	1	1	
NASJ-159-GH-04-01	1	Anthracene	3510/8310	•		0.04	0.05	1	
NASJ-159-GH-04-01	1		3510/8310	ug/L		0.03	0.03	1	
NASJ-159-GH-04-01	1	Fluoranthene	3510/8310	ug/L					
NASJ-159-GH-04-01	1	Pyrene	3510/8310	ug/L		0.04	0.05	1	
NASJ-159-GH-04-01	1	Benzo(a)anthracene	3510/8310	ug/L		0.02	0.05	1	
NASJ-159-GH-04-01	1	Chrysene	3510/8310	ug/L		0.02	0.05	1	
NASJ-159-GH-04-01	1	Benzo(b)fluoranthene	3510/8310	ug/L			0.1	1	
NASJ-159-GH-04-01	1	Benzo(k)fluoranthene	3510/8310	ug/L		0.03	0.05	1	
NASJ-159-GH-04-01	1	Benzo(a)pyrene	3510/8310	ug/L		0.03	0.05	1	
NASJ-159-GH-04-01	1	Dibenzo(a,h)anthracene	3510/8310	ug/L		0.07	0.1	1	
NASJ-159-GH-04-01	1	Benzo(g,h,i)perylene	3510/8310	ug/L		0.07	0.1	1	
NASJ-159-GH-04-01	1	Indeno(1,2,3-cd)pyrene	3510/8310	ug/L		0.02	0.05	1	
NASJ-159-GH-04-01	1	P-Terphenyl	3510/8310	%		0.0	^	1	
NASJ-159-GH-04-01	1	Methyl tert-butyl ether	5030/8021	ug/L		0.3	2	1	
NASJ-159-GH-04-01	1	Benzene	5030/8021	ug/L		0.2	1	1	
NASJ-159-GH-04-01	1	Toluene	5030/8021	ug/L		0.4	1	1	
NASJ-159-GH-04-01	1	Chlorobenzene	5030/8021	ug/L		0.4	1	1	
NASJ-159-GH-04-01	1	Ethylbenzene	5030/8021	ug/L		0.2	1	1	
NASJ-159-GH-04-01	1	m-Xylene & p-Xylene	5030/8021	ug/L		0.3	1	1	
NASJ-159-GH-04-01	1	o-Xylene	5030/8021	ug/L		0.2	1	1	
NASJ-159-GH-04-01	1	1,3-Dichlorobenzene	5030/8021	ug/L		0.6	1	1	
NASJ-159-GH-04-01	1	1,4-Dichlorobenzene	5030/8021	ug/L		0.4	1	1	
NASJ-159-GH-04-01	1	1,2-Dichlorobenzene	5030/8021	ug/L		0.6	1	1	
NASJ-159-GH-04-01	1	Bromofluorobenzene	5030/8021	%				1	
·	4	1 1	2040/0040	/1	0.003		0.005	4	
NASJ-159-GH-05-01	1	Lead	3010/6010		0.003	. 0.3	0.005	1 1	
NASJ-159-GH-05-01	1	Naphthalene	3510/8310	ug/L		0.2			
NASJ-159-GH-05-01	1	Acenaphthylene	3510/8310	ug/L		0.1	1	1	
NASJ-159-GH-05-01	1	1-Methylnaphthalene	3510/8310	ug/L		0.1	1 1	1 1	
NASJ-159-GH-05-01	1	2-Methylnaphthalene	3510/8310	ug/L		0.2		1	
NASJ-159-GH-05-01	1	Acenaphthene	3510/8310	ug/L		0.2	0.5	1	
NASJ-159-GH-05-01	1	Fluorene	3510/8310	ug/L		0.04	0.1	1	•
NASJ-159-GH-05-01	1	Phenanthrene	3510/8310	ug/L		0.04	1	· ·	
NASJ-159-GH-05-01	1	Anthracene	3510/8310	ug/L		0.03	0.05	1	
NASJ-159-GH-05-01	1	Fluoranthene	3510/8310	ug/L		0.04	0.1	1	
NASJ-159-GH-05-01	1	Pyrene	3510/8310	ug/L		0.04	0.05	1	
NASJ-159-GH-05-01	1	Benzo(a)anthracene	3510/8310	ug/L		0.02	0.05	1	
NASJ-159-GH-05-01	1	Chrysene	3510/8310	ug/L		0.02	0.05	1	
NASJ-159-GH-05-01	1	Benzo(b)fluoranthene	3510/8310	ug/L		0.06	0.1	1	
NASJ-159-GH-05-01	1	Benzo(k)fluoranthene	3510/8310	ug/L		0.03	0.05	1	
NASJ-159-GH-05-01	1	Benzo(a)pyrene	3510/8310	ug/L		0.03	0.05	1	
NASJ-159-GH-05-01	1	Dibenzo(a,h)anthracene	3510/8310	ug/L		0.07	0.1	1	
NASJ-159-GH-05-01	1	Benzo(g,h,i)perylene	3510/8310	ug/L		0.07	0.1	1	
NASJ-159-GH-05-01	1	Indeno(1,2,3-cd)pyrene	3510/8310	ug/L		0.02	0.05	1	
NASJ-159-GH-05-01	1	P-Terphenyl	3510/8310	%			_	1	
NASJ-159-GH-05-01	1	Methyl tert-butyl ether	5030/8021	ug/L		0.3	2	1	
NASJ-159-GH-05-01	1	Benzene	5030/8021	ug/L		0.2	1	1	
NASJ-159-GH-05-01	1	Toluene	5030/8021	ug/L		0.4	1	1	
NASJ-159-GH-05-01	1	Chlorobenzene	5030/8021	ug/L		0.4	1	1	
NASJ-159-GH-05-01	1	Ethylbenzene	5030/8021	ug/L		0.2	1	1	
NASJ-159-GH-05-01	1	m-Xylene & p-Xylene	5030/8021	ug/L		0.3	1	1	
NASJ-159-GH-05-01	1	o-Xylene	5030/8021	ug/L		0.2	1	1	
NASJ-159-GH-05-01	1	1,3-Dichlorobenzene	5030/8021	ug/L		0.6	1	1	
NASJ-159-GH-05-01	1 ,	1,4-Dichlorobenzene	5030/8021	ug/L		0.4	1	1	
NASJ-159-GH-05-01	1	1,2-Dichlorobenzene	5030/8021	ug/L		0.6	1	1	
NASJ-159-GH-05-01	1	Bromofluorobenzene	5030/8021	%				1	

NASJ-159-GH-06-01	1	Lead	3010/6010	mg/L	0.003		0.005	1
NASJ-159-GH-06-01	1	Naphthalene	3510/8310	ug/L		0.2	0.5	· 1
NASJ-159-GH-06-01	1	Acenaphthylene	3510/8310	ug/L		0.1	1	1
NASJ-159-GH-06-01	1	1-Methylnaphthalene	3510/8310	ug/L		0.1	1	1
NASJ-159-GH-06-01	1	2-Methylnaphthalene	3510/8310	ug/L		0.2	1	1
NASJ-159-GH-06-01	1	Acenaphthene	3510/8310	ug/L		0.2	0.5	1
NASJ-159-GH-06-01	1	Fluorene	3510/8310	ug/L		0.04	0.1	1
NASJ-159-GH-06-01	1	Phenanthrene	3510/8310	ug/L		0.04	1	1
NASJ-159-GH-06-01	1	Anthracene	3510/8310	ug/L		0.03	0.05	1
NASJ-159-GH-06-01	1	Fluoranthene	3510/8310	ug/L		0.04	0.1	1
NASJ-159-GH-06-01	1	Pyrene	3510/8310	ug/L		0.04	0.05	1
NASJ-159-GH-06-01	. 1	Benzo(a)anthracene	3510/8310	ug/L		0.02	0.05	1
NASJ-159-GH-06-01	1	Chrysene	3510/8310	ug/L		0.02	0.05	1
NASJ-159-GH-06-01	1	Benzo(b)fluoranthene	3510/8310	ug/L		0.06	0.1	1
NASJ-159-GH-06-01	1	Benzo(k)fluoranthene	3510/8310	ug/L		0.03	0.05	1
NASJ-159-GH-06-01	1.	Benzo(a)pyrene	3510/8310	ug/L		0.03	0.05	1
NASJ-159-GH-06-01	1	Dibenzo(a,h)anthracene	3510/8310	ug/L		0.07	0.1	1
NASJ-159-GH-06-01	1	Benzo(g,h,i)perylene	3510/8310	ug/L		0.07	0.1	1
NASJ-159-GH-06-01	1	Indeno(1,2,3-cd)pyrene	3510/8310	ug/L		0.02	0.05	1
NASJ-159-GH-06-01	1	P-Terphenyl	3510/8310	%				1
NASJ-159-GH-06-01	1	Methyl tert-butyl ether	5030/8021	ug/L		0.3	2	1
NASJ-159-GH-06-01	1	Benzene	5030/8021	ug/L		0.2	1	1
NASJ-159-GH-06-01	1	Toluene	5030/8021	ug/L		0.4	1	1
NASJ-159-GH-06-01	1	Chlorobenzene	5030/8021	ug/L		0.4	1	1
NASJ-159-GH-06-01	1	Ethylbenzene	5030/8021	ug/L	•	0.2	1	1
NASJ-159-GH-06-01	1	m-Xylene & p-Xylene	5030/8021	ug/L		0.3	. 1	1
NASJ-159-GH-06-01	1	o-Xylene	5030/8021	ug/L		0.2	1	1
NASJ-159-GH-06-01	1	1,3-Dichlorobenzene	5030/8021	ug/L		0.6	1	1
NASJ-159-GH-06-01	1	1,4-Dichlorobenzene	5030/8021	ug/L		0.4	1	1
NASJ-159-GH-06-01	1	1,2-Dichlorobenzene	5030/8021	ug/L		0.6	1	1
NASJ-159-GH-06-01	1	Bromofluorobenzene	5030/8021	%				1
NA 0 1 450 OLL 07 04	4	Lond	20/10/6010	ma/l	0.003		0.005	4
NASJ-159-GH-07-01	1	Lead	3010/6010	_	0.003	0.2	0.005	1
NASJ-159-GH-07-01	1	Naphthalene	3510/8310	ug/L	0.003	0.2	0.5	· 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01	1	Naphthalene Acenaphthylene	3510/8310 3510/8310	ug/L ug/L	0.003	0.1	0.5 1	1
NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01	1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene	3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L	0.003	0.1 0.1	0.5 1 1	1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01	1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene	3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L	0.003	0.1 0.1 0.2	0.5 1 1 1	1 1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01	1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L	0.003	0.1 0.1 0.2 0.2	0.5 1 1 1 0.5	1 1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01	1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L	0.003	0.1 0.1 0.2 0.2 0.04	0.5 1 1 1 0.5 0.1	1 1 1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01	1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L	0.003	0.1 0.1 0.2 0.2 0.04 0.04	0.5 1 1 1 0.5 0.1	1 1 1 1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01	1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.003	0.1 0.2 0.2 0.04 0.04 0.03	0.5 1 1 0.5 0.1 1 0.05	1 1 1 1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01	1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.003	0.1 0.2 0.2 0.04 0.04 0.03 0.04	0.5 1 1 0.5 0.1 1 0.05 0.1	1 1 1 1 1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01	1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.003	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04	0.5 1 1 1 0.5 0.1 1 0.05 0.1 0.05	1 1 1 1 1 1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01	1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.003	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.1 0.05	1 1 1 1 1 1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01	1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.003	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01	1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.003	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02 0.02 0.06	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01	1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.003	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02 0.02 0.06 0.03	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.003	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.003	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.003	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.003	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.003	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.003	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01 NASJ-159-GH-07-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.003	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.003	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.003	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.003	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.003	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.02 0.3 0.2 0.4 0.4 0.2	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01		Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.003	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.02 0.3 0.2 0.4 0.2 0.3	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 0-Xylene 1,3-Dichlorobenzene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.003	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.06 0.03 0.07 0.07 0.02 0.4 0.4 0.2 0.3 0.2	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene 1,3-Dichlorobenzene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.003	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.06 0.03 0.07 0.07 0.02 0.3 0.2 0.4 0.4 0.2 0.4 0.4 0.2	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-07-01 NASJ-159-GH-07-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 0-Xylene 1,3-Dichlorobenzene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.003	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.06 0.03 0.07 0.07 0.02 0.4 0.4 0.2 0.3 0.2	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

NASJ-159-GH-08-01	1	Lead	3010/6010	mg/L	0.003	0.005	1
NASJ-159-GH-08-01	1	Naphthalene	3510/8310	ug/L	0.2	0.5	1
NASJ-159-GH-08-01	1	Acenaphthylene	3510/8310	ug/L	0.1	1	1
	1	1-Methylnaphthalene	3510/8310	ug/L	0.1	1	1
NASJ-159-GH-08-01	•	· ·					· ·
NASJ-159-GH-08-01	1	2-Methylnaphthalene	3510/8310	ug/L	0.2	1	1
NASJ-159-GH-08-01	1	Acenaphthene	3510/8310	ug/L	0.2	0.5	1
NASJ-159-GH-08-01	1	Fluorene	3510/8310	ug/L	0.04	0.1	1
NASJ-159-GH-08-01	1	Phenanthrene	3510/8310	ug/L	0.04	1	1
NASJ-159-GH-08-01	1	Anthracene	3510/8310	ug/L	0.03	0.05	1
	1	Fluoranthene	3510/8310	ug/L	0.04	0.1	1
NASJ-159-GH-08-01	· •						-
NASJ-159-GH-08-01	1	Pyrene	3510/8310	ug/L	0.04	0.05	1
NASJ-159-GH-08-01	1	Benzo(a)anthracene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-08-01	1	Chrysene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-08-01	1	Benzo(b)fluoranthene	3510/8310	ug/L	0.06	0.1	1
NASJ-159-GH-08-01	1	Benzo(k)fluoranthene	3510/8310	ug/L	0.03	0.05	· 1
	1	Benzo(a)pyrene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-08-01		, ,,,		_			-
NASJ-159-GH-08-01	1	Dibenzo(a,h)anthracene	3510/8310	ug/L	0.07	0.1	1
NASJ-159-GH-08-01	1	Benzo(g,h,i)perylene	3510/8310	ug/L	0.07	0.1	1
NASJ-159-GH-08-01	1	Indeno(1,2,3-cd)pyrene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-08-01	1	P-Terphenyl	3510/8310	%			1
NASJ-159-GH-08-01	1	Methyl tert-butyl ether	5030/8021	ug/L	0.3	2	1
	1	Benzene	5030/8021	ug/L	0.2	1	1
NASJ-159-GH-08-01	-			_		1	1
NASJ-159-GH-08-01	1	Toluene	5030/8021	ug/L	0.4		-
NASJ-159-GH-08-01	1	Chlorobenzene	5030/8021	ug/L	0.4	1 .	1
NASJ-159-GH-08-01	1	Ethylbenzene	5030/8021	ug/L	0.2	1	. 1
NASJ-159-GH-08-01	1	m-Xylene & p-Xylene	5030/8021	ug/L	0.3	1	1
NASJ-159-GH-08-01	1	o-Xylene	5030/8021	ug/L	0.2	. 1	1
NASJ-159-GH-08-01	1	1.3-Dichlorobenzene	5030/8021	ug/L	0.6	1	1
	1	1,4-Dichlorobenzene	5030/8021	ug/L	0.4	1	1
NASJ-159-GH-08-01	•			•	0.6	1	
NASJ-159-GH-08-01	1	1,2-Dichlorobenzene	5030/8021	ug/L	0.0	1	1
NASJ-159-GH-08-01	1	Bromofluorobenzene	5030/8021	%			1
NASJ-159-GH-20-01	1	Lead	301.0/6010	mg/L	0.003	0.005	1
NASJ-159-GH-20-01	1 1	= ' '	301.0/6010 3510/8310	mg/L ug/L	0.003	0.005 0.5	1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01	1	Naphthalene	3510/8310	ug/L	0.2		1
NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01	1	Naphthalene Acenaphthylene	3510/8310 3510/8310	ug/L ug/L	0.2 0.1	0.5 1	1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene	3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L	0.2 0.1 0.1	0.5 1 1	1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene	3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2	0.5 1 1 1	1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2	0.5 1 1 1 0.5	1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04	0.5 1 1 1 0.5 0.1	1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2	0.5 1 1 1 0.5 0.1	1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04	0.5 1 1 1 0.5 0.1	1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04	0.5 1 1 1 0.5 0.1	1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04	0.5 1 1 1 0.5 0.1 1 0.05 0.1	1 1 1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05	1 1 1 1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02	0.5 1 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05	1 1 1 1 1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02 0.02 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02 0.02 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02 0.02 0.06 0.03	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.03	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.03 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.03	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07 0.07 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07 0.07	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07 0.07 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07 0.07 0.02 0.3 0.4 0.4 0.04	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.06 0.03 0.03 0.07 0.07 0.07 0.02 0.3 0.4 0.4 0.02	0.5 1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02 0.3 0.4 0.4 0.03	0.5 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02 0.3 0.2 0.4 0.4 0.2	0.5 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 0-Xylene 1,3-Dichlorobenzene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.06 0.03 0.03 0.07 0.07 0.02 0.3 0.2 0.4 0.4 0.2	0.5 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02 0.3 0.2 0.4 0.4 0.2	0.5 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 0-Xylene 1,3-Dichlorobenzene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.06 0.03 0.03 0.07 0.07 0.02 0.3 0.2 0.4 0.4 0.2	0.5 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-20-01 NASJ-159-GH-20-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 0-Xylene 1,3-Dichlorobenzene	3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 0.1 0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02 0.3 0.2 0.4 0.4 0.2 0.3 0.2 0.4 0.4 0.4 0.2 0.3 0.2 0.4 0.4 0.4 0.2 0.3 0.2 0.6 0.4	0.5 1 1 0.5 0.1 1 0.05 0.05 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

NASJ-159-GH-DUP3-01	1	Lead	3010/6010	ma/L 0.0	03	0.005	1
NASJ-159-GH-DUP3-01	1	Naphthalene	3510/8310	ug/L	0.2	0.5	1
NASJ-159-GH-DUP3-01	1	Acenaphthylene	3510/8310	ug/L	0.1	1	i
NASJ-159-GH-DUP3-01	1	1-Methylnaphthalene	3510/8310	ug/L	0.1	1	1
NASJ-159-GH-DUP3-01	1	2-Methylnaphthalene	3510/8310	ug/L	0.2	1	1
NASJ-159-GH-DUP3-01	1	Acenaphthene	3510/8310	ug/L	0.2	0.5	1
NASJ-159-GH-DUP3-01	1	Fluorene	3510/8310	ug/L	0.04	0.1	1
NASJ-159-GH-DUP3-01	1	Phenanthrene	3510/8310	ug/L	0.04	1	1
NASJ-159-GH-DUP3-01	1	Anthracene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-DUP3-01	1	Fluoranthene	3510/8310	ug/L	0.04	0.1	1
NASJ-159-GH-DUP3-01	1	Pyrene	3510/8310	ug/L	0.04	0.05	1
NASJ-159-GH-DUP3-01	1	Benzo(a)anthracene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-DUP3-01	1	Chrysene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-DUP3-01	1	Benzo(b)fluoranthene	3510/8310	ug/L	0.06	0.1	1
NASJ-159-GH-DUP3-01	1	Benzo(k)fluoranthene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-DUP3-01	1	Benzo(a)pyrene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-DUP3-01	1	Dibenzo(a,h)anthracene	3510/8310	ug/L	0.07	0.1	1
NASJ-159-GH-DUP3-01	1	Benzo(g,h,i)perylene	3510/8310	ug/L	0.07	0.1	1
NASJ-159-GH-DUP3-01	1	Indeno(1,2,3-cd)pyrene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-DUP3-01	. 1	P-Terphenyl	3510/8310	%			1
NASJ-159-GH-DUP3-01	1	Methyl tert-butyl ether	5030/8021	ug/L	0.3	2	1
NASJ-159-GH-DUP3-01	1	Benzene	5030/8021	ug/L	0.2	1	1
NASJ-159-GH-DUP3-01	1	Toluene	5030/8021	ug/L	0.4	1	1
NASJ-159-GH-DUP3-01	1	Chlorobenzene	5030/8021	ug/L	0.4	1	1
NASJ-159-GH-DUP3-01	1	Ethylbenzene	5030/8021	ug/L	0.2	1	1
NASJ-159-GH-DUP3-01	1	m-Xylene & p-Xylene	5030/8021	ug/L	0.3	· 1	1
NASJ-159-GH-DUP3-01	1	o-Xylene	5030/8021	ug/L	0.2	1	1
NASJ-159-GH-DUP3-01	1	1,3-Dichlorobenzene	5030/8021	ug/L	0.6	1	1
NASJ-159-GH-DUP3-01	1	1,4-Dichlorobenzene	5030/8021	ug/L	0.4	1	1
NASJ-159-GH-DUP3-01	1 .	1,2-Dichlorobenzene	5030/8021	ug/L	0.6	1	1
NASJ-159-GH-DUP3-01	1	Bromofluorobenzene	5030/8021	%		-	1
TRIPBLANK	1	Methyl tert-butyl ether	5030/8021	ug/L	0.3	2	1
TRIPBLANK	1	Benzene	5030/8021	· ug/L	0.2	1	1
TRIPBLANK	1	Toluene	5030/8021	ug/L*	0.4	1	1
TRIPBLANK	1	Chlorobenzene	5030/8021	ug/L	0.4	1	1
TRIPBLANK	1	Ethylbenzene	5030/8021	ug/L	0.2	1	1
TRIPBLANK	1	m-Xylene & p-Xylene	5030/8021	ug/L	0.3	1	1
TRIPBLANK	1	o-Xylene	5030/8021	ug/L	0.2	1	1
TRIPBLANK	1	1,3-Dichlorobenzene	5030/8021	ug/L	0.6	1	1
TRIPBLANK	1	1,4-Dichlorobenzene	5030/8021	ug/L	0.4	1	1
TRIPBLANK	1	1,2-Dichlorobenzene	5030/8021	ug/L	0.6	1	1
TRIPBLANK	1	Bromofluorobenzene	5030/8021	%			1

Environmental Conservation Laboratories, Inc.

4810 Executive Park Court, Suite 211 Jacksonville, Florida 32216-6069 904 / 296-3007 Fax 904 / 296-6210 www.encolabs.com

DHRS Certification No. E82277

CLIENT : Tetra Tech NUS, Inc.

ADDRESS: 661 Anderson Dr.

Foster Plaza 7

Pittsburg, PA 15220-2745

REPORT #

: JR8408

DATE SUBMITTED: September 3, 1999

DATE REPORTED : September 28, 1999

PAGE 1 OF 26

ATTENTION: Ms. Lee Leck

SAMPLE IDENTIFICATION

Samples submitted and identified by client as:

PROJECT #: N0255.FB0.050230

Gas Hill

#1	-	NASJ-159-GH-35-02	@	14:35	(09/02/99)
#2	_	NASJ-159-GH-36-02	@	14:42	(09/02/99)
#3	_	NASJ-159-GH-37-02	@	15:29	(09/02/99)
#4	-	NASJ-159-GH-33-02	@	16:22	(09/02/99)
#5	-	NASJ-159-GH-34-02	@	17:16	(09/02/99)
#6	-	NASJ-159-GH-32-02	@	17:55	(09/02/99)
#7	-	NASJ-159-GH-38-02	@	10:30	(09/03/99)
#8	-	NASJ-159-GH-39-02	@	10:36	(09/03/99)
#9	-	NASJ-159-GH-MSMS01-2	@	10:30	(09/03/99)
#10		NASJ-159-GH-DU01-02			(09/02/99)
#11	-	TRIP BLANK			(08/31/99)

PROJECT MANAGER

REPORT # : JR8408

DATE REPORTED: September 28, 1999 REFERENCE: N0255.FBO.050230

PROJECT NAME : Gas Hill

PAGE 2 OF 26

EPA METHOD 5030/8021 - VOLATILE ORGANICS	NASJ-159-GH-35-02	<u>Units</u>
Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	2.0 U 1.0 U 4.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	μg/L μg/L μg/L μg/L μg/L μg/L μg/L
Surrogate (Bromofluorobenzene) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limits Date Analyzed	50 59 118 65-129 09/07/99	µg/L µg/L % %

TOTAL METALS	METHOD	NASJ-159-GH-35-02	<u>Units</u>
Lead	3010/6010b	0.0050 I	mg/L
Date Analyzed	to the second	09/08/99	

U = Compound was analyzed for but not detected to the level shown.

I = Analyte detected; value is between the Method Detection Level (MDL) and the Practical Quantitation Level (PQL).

REPORT # : JR8408

DATE REPORTED: September 28, 1999
REFERENCE : N0255.FB0.050230

PROJECT NAME : Gas Hill

PAGE 3 OF 26

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-35-02	<u>Units</u>
Naphthalene	5.0 U D1	μg/L
Acenaphthylene	10 U D1	μg/L
1-Methylnaphthalene	99 D1	μg/L
2-Methylnaphthalene	62 D1	μg/L
Acenaphthene	12 D1	μg/L
Fluorene	5.6 D1	μg/L
Phenanthrene	10 U D1	μg/L
Anthracene	1.9 D1	μg/L
Fluoranthene	3.9 D1 1.0 U D1	μg/L
Pyrene	0.50 U D1	μg/L
Benzo(a) anthracene	0.50 U D1	μg/L
Chrysene	1.0 U D1	μg/L
Benzo(b) fluoranthene	0.50 U D1	μg/L
Benzo(k) fluoranthene	0.50 U D1	μg/L
Benzo(a)pyrene Dibenzo(a,h)anthracene	1.0 U D1	μg/L
	1.0 U D1	μg/L
Benzo(g,h,i)perylene	0.50 U D1	μg/L
Indeno(1,2,3-cd)pyrene	0.50 0 DI	$\mu g/L$
Surrogate (p-terphenyl)		
Surrogate Expected Value	10.0	$\mu g/L$
Surrogate Reported Value	7.2	μg/L
Surrogate Percent Recovery	72	% %
Surrogate Control Limit	39-148	%
Date Extracted	09/09/99	v
Date Analyzed	09/11/99	
Ducc mary aca		

U = Compound was analyzed for but not detected to the level shown. D1 = Analyte value determined from a 1:10 dilution.

REPORT # : JR8408

DATE REPORTED: September 28, 1999
REFERENCE: N0255.FB0.050230

PROJECT NAME : Gas Hill

PAGE 4 OF 26

EPA METHOD 5030/8 VOLATILE ORGANICS		NASJ-159-GH-36-02	<u>Units</u>
Methyl tert-butyl	ether	2.0 U	μ g/L
Benzene		1.0 U	μ g/L
Toluene		2.0	μ g/L
Chlorobenzene		1.0 U	μ g/L
Ethylbenzene		1.0 U	μ g/L
m-Xylene & p-Xyle	ene	1.0 U	μ g/L
o-Xylene		1.0 U	μ g/L
1,3-Dichlorobenze		1.0 U	μ g/L
1,4-Dichlorobenze		1.0 U	$\mu g/L$
1,2-Dichlorobenze	ene	1.0 U	μg/L
Surrogate (Bromof	luorobenzene)		
Surrogate Expecte		50	μg/L
Surrogate Reporte		50.5	μg/L
Surrogate Percent		101	%
Surrogate Control		65-129	%
Date Analyzed		09/07/99	
	·		
TOTAL METALS	<u>METHOD</u>	NASJ-159-GH-36-02	<u>Units</u>
Lead	3010/6010b	0.0060 I	mg/L
Date Analyzed		09/08/99	

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR8408

DATE REPORTED: September 28, 1999 REFERENCE: N0255.FB0.050230

PROJECT NAME : Gas Hill

PAGE 5 OF 26

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-36-02	<u>Units</u>
Naphthalene Acenaphthylene	0.50 U 1.0 U	μg/L μg/L
1-Methylnaphthalene	1.0 U	μg/L
2-Methylnaphthalene Acenaphthene	1.0 U 0.50 U	μg/L
Fluorene	1.0 U	μg/L
Phenanthrene	1.0 U	μg/L μg/L
Anthracene	0.10 U	$\mu g/L$
Fluoranthene	0.10 U	μg/L
Pyrene	0.10 U	μg/L
Benzo(a)anthracene	0.050 Ŭ	μg/L
Chrysene	0.050 Ŭ	μg/L
Benzo(b)fluoranthene	0.10 U	μ g/L
Benzo(k)fluoranthene	0.050 U	μg/L
Benzo(a)pyrene	0.050 U	μg/L
Dibenzo(a,h) anthracene	0.10 U	μg/L
Benzo(g,h,i) perylene	0.10 U	μg/L
Indeno(1,2,3-cd)pyrene	0.050 U	μ g/L
Surrogate (p-terphenyl)		
Surrogate Expected Value	10.0	μg/L
Surrogate Reported Value	8.4	μg/L
Surrogate Percent Recovery	84	9
Surrogate Control Limit	39-148	%
Date Extracted	09/09/99	
Date Analyzed	09/11/99	

U = Compound was analyzed for but not detected to the level shown.
I = Analyte detected; value is between the Method Detection Level (MDL)
 and the Practical Quantitation Level (PQL).

REPORT # : JR8408

DATE REPORTED: September 28, 1999
REFERENCE: N0255.FBO.050230

mg/L

PROJECT NAME : Gas Hill

PAGE 6 OF 26

0.0050 U

09/08/99

RESULTS OF ANALYSIS

EPA METHOD 5030/8021 -

Lead

Date Analyzed

VOLATILE ORGANICS	NASJ-159-GH-37-02	<u>Units</u>
Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	2.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L
Surrogate (Bromofluorobenzene) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limits Date Analyzed	50 50.5 101 65-129 09/07/99	μg/L μg/L % %
TOTAL METALS METHOD	NASJ-159-GH-37-02	<u>Units</u>

3010/6010b

REPORT # : JR8408

DATE REPORTED: September 28, 1999
REFERENCE: N0255.FB0.050230

PROJECT NAME : Gas Hill

PAGE 7 OF 26

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-37-02	<u>Units</u>
Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene	0.50 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.10 U 0.10 U 0.10 U 0.050 U 0.050 U 0.050 U 0.050 U 0.10 U 0.10 U 0.10 U 0.050 U 0.050 U 0.050 U	р р р р р р р р р р р р р р р р р р р
Surrogate (p-terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limit Date Extracted Date Analyzed	10.8 8.8 88 39-148 09/09/99 09/11/99	μg/L μg/L %

REPORT # : JR8408

DATE REPORTED: September 28, 1999
REFERENCE: N0255.FB0.050230
PROJECT NAME: Gas Hill

PAGE 8 OF 26

RESULTS OF ANALYSIS

EPA METHOD 5030/8021 -

VOLATILE ORGANICS	NASJ-159-GH-33-02	<u>Units</u>
Methyl tert-butyl ether	2.0 U	μg/L
Benzene	1.0 U	$\mu { t g}/{ t L}$
Toluene	1.0 U	$\mu { m g}/{ m L}$
Chlorobenzene	1.0 U	μ g/L
Ethylbenzene	1.0 U	μ g/L $^{\circ}$
m-Xylene & p-Xylene	1.0 U	μ g/L
o-Xylene	1.0 U	μ g/L
1,3-Dichlorobenzene	1.0 U	μ g/L
1,4-Dichlorobenzene	1.0 U	μ g/L
1,2-Dichlorobenzene	1.0 U	μ g/L
Surrogate (Bromofluorobenzene)		
Surrogate Expected Value	50	μg/L
Surrogate Reported Value	52	μg/L
Surrogate Percent Recovery	104	%
Surrogate Control Limits	65-129	%
Date Analyzed	09/07/99	
		•
TOTAL METALS METHOD	NASJ-159-GH-33-02	<u>Units</u>
Lead 3010/6010b	0.0060 I	mg/L
Date Analyzed	09/08/99	

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR8408

DATE REPORTED: September 28, 1999
REFERENCE: N0255.FB0.050230

PROJECT NAME : Gas Hill .

PAGE 9 OF 26

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-33-02	<u>Units</u>
Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene	0.50 U 1.0 U 1.0 U 1.0 U 0.50 U 1.0 U 1.0 U 1.0 U 0.10 U 0.10 U 0.10 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U	μα/L μα/L μα/L μα/L μα/L μα/L μα/L μα/L
Surrogate (p-terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limit Date Extracted Date Analyzed	10.0 8.6 86 39-148 09/09/99 09/11/99	μg/L μg/L %

U = Compound was analyzed for but not detected to the level shown.

I = Analyte detected; value is between the Method Detection Level (MDL) and the Practical Quantitation Level (PQL).

REPORT # : JR8408

DATE REPORTED: September 28, 1999 REFERENCE: N0255.FBO.050230

PROJECT NAME : Gas Hill

PAGE 10 OF 26

RESULTS OF ANALYSIS

EPA METHOD 5030/8021 -

VOLATILE ORGANIC	<u>!S</u>	NASJ-159-GH-34-02	<u>Units</u>
Methyl tert-buty Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xyl o-Xylene 1,3-Dichlorobenz 1,4-Dichlorobenz 1,2-Dichlorobenz	ene ene ene	2.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L
Surrogate (Bromo Surrogate Expect Surrogate Report Surrogate Percen Surrogate Contro Date Analyzed	ed Value ed Value t Recovery	50 51.5 103 65-129 09/07/99	μg/L μg/L %
TOTAL METALS	METHOD	NASJ-159-GH-34-02	<u>Units</u>
Lead Date Analyzed	3010/6010b	0.0050 U 09/08/99	mg/L

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR8408

DATE REPORTED: September 28, 1999
REFERENCE: N0255.FB0.050230

PROJECT NAME : Gas Hill

PAGE 11 OF 26

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-34-02	<u>Units</u>
Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene	0.50 U 1.0 U 1.0 U 1.0 U 1.0 U 0.50 U 1.0 U 1.0 U 0.10 U 0.10 U 0.10 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U	μα/L μασ/L μασ/L μασασασασασασασασασασασασασασασασασασασ
Surrogate (p-terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limit Date Extracted Date Analyzed	10 3.8 38* 39-148 09/09/99 09/11/99	μg/L μg/L %

^{* =} Surrogate recovery outside of laboratory established limits.
U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR8408

DATE REPORTED: September 28, 1999
REFERENCE: N0255.FBO.050230

PROJECT NAME : Gas Hill

PAGE 12 OF 26

EPA METHOD 5030	/8021 -		Y
VOLATILE ORGANIC		NASJ-159-GH-32-02	<u>Units</u>
Methyl tert-buty	vl ether	2.0 U	μg/L
Benzene		1.0 U	$\mu { t g}/{ t L}$
Toluene		1.2 I	$\mu { t g}/{ t L}$
Chlorobenzene		1.0 U	$\mu exttt{g/L}$
Ethylbenzene		1.0 U	μ g/L
m-Xylene & p-Xyl	lene	1.0 U	μg/L
o-Xylene		1.0 U	μ g/L
1,3-Dichlorobenz		1.0 U	μ g/L
1,4-Dichlorobenz		1.0 U	μ g/L
1,2-Dichlorobenz	zene	1.0 U	μ g/L
Surrogate (Bromo	ofluorobenzene)		
Surrogate Expect		50	μg/L
Surrogate Report		50.5	$\mu extsf{g}/ extsf{L}$
Surrogate Percer		101	%
Surrogate Contro	ol Limits	65-129	%
Date Analyzed		09/07/99	
·			
TOTAL METALS	METHOD	NASJ-159-GH-32-02	<u>Units</u>
Lead	3010/6010b	0.0050 U	mg/L
Date Analyzed		09/08/99	J ,

U = Compound was analyzed for but not detected to the level shown.

I = Analyte detected; value is between the Method Detection Level (MDL) and the Practical Quantitation Level (PQL).

REPORT # : JR8408

DATE REPORTED: September 28, 1999
REFERENCE: N0255.FBO.050230
PROJECT NAME: Gas Hill

PAGE 13 OF 26

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-32-02	<u>Units</u>
Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene	0.50 U 1.0 U 1.0 U 1.0 U 2.4 1.0 U 1.0 U 0.10 U 0.10 U 0.10 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U	mady padd
Surrogate (p-terphenyl) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limit Date Extracted Date Analyzed	10.0 3.8 38* 39-148 09/09/99 09/11/99	ha\r ha\r % %

^{* =} Surrogate recovery outside of laboratory established limits. U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR8408

DATE REPORTED: September 28, 1999 REFERENCE: N0255.FB0.050230

PROJECT NAME : Gas Hill

PAGE 14 OF 26

EPA METHOD 5030, VOLATILE ORGANIO		NASJ-159-GH-38-02	<u>Units</u>
Methyl tert-buty	yl ether	2.0 U	μg/L
Benzene		1.0 U	μg/L
Toluene		1.1 I	μ g/L
Chlorobenzene		1.0 U	μ g/L
Ethylbenzene		1.0 U	μ g/L
m-Xylene & p-Xy	lene	1.0 U	μg/L
o-Xylene		1.0 U	μ g/L
1,3-Dichloroben		1.0 U	μg/L
1,4-Dichloroben		1.0 U	μ g/L
1,2-Dichloroben	zene	1.0 U	$\mu g/L$
Surrogate (Brome	ofluorobenzene)		
Surrogate Expect	ted Value	50	μg/L
Surrogate Report		52.5	μ g/L
Surrogate Perce		105	%
Surrogate Contro	ol Limits	65-129	%
Date Analyzed		09/08/99	
· <u>-</u>			
TOTAL METALS	METHOD	NASJ-159-GH-38-02	<u>Units</u>
Lead	3010/6010b	0.0050 U	mg/L
Date Analyzed		09/08/99	

 $^{{\}tt U}={\tt Compound}$ was analyzed for but not detected to the level shown. ${\tt I}={\tt Analyte}$ detected; value is between the Method Detection Level (MDL) and the Practical Quantitation Level (PQL).

REPORT # : JR8408

DATE REPORTED: September 28, 1999
REFERENCE: N0255.FBO.050230

PROJECT NAME : Gas Hill

PAGE 15 OF 26

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-38-02	<u>Units</u>
Naphthalene	0.50 U	μg/L
Acenaphthylene	1.0 U	μg/L
1-Methylnaphthalene	1.0 U	μg/L
2-Methylnaphthalene	1.0 U	$\mu { m g}/{ m L}$
Acenaphthene	0.50 U	$\mu {\sf g}/{\sf L}$
Fluorene	1.0 U	$\mu { m g}/{ m L}$
Phenanthrene	1.0 U	$\mu { m g}/{ m L}$
Anthracene	0.10 U	$\mu { m g}/{ m L}$
Fluoranthene	0.10 I	μ g/L
Pyrene	0.10 U	μ g/L
Benzo(a)anthracene	0.050 U	μ g/L
Chrysene	0.050 U	μ g/L
Benzo(b)fluoranthene	0.10 U	μ g/L
Benzo(k)fluoranthene	0.050 U	μ g/L
Benzo(a)pyrene	0.050 U	μ g/L
Dibenzo(a,h)anthracene	0.10 U	$\mu { m g}/{ m L}$
Benzo(g,h,i)perylene	0.10 U	μ g/L
Indeno(1,2,3-cd)pyrene	0.050 U	$\mu { t g}/{ t L}$
Surrogate (p-terphenyl)		
Surrogate Expected Value	10.0	μg/L
Surrogate Reported Value	7.0	μg/L
Surrogate Percent Recovery	70	٠ %
Surrogate Control Limit	39-148	% %
Date Extracted	09/09/99	
Date Analyzed	09/11/99	

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR8408

DATE REPORTED: September 28, 1999
REFERENCE: N0255.FBO.050230
PROJECT NAME: Gas Hill

PAGE 16 OF 26

RESULTS OF ANALYSIS

EPA METHOD 5030/8021 -

VOLATILE ORGANICS		NASJ-159-GH-39-02	Units
Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene		3.5 3.2 1.8 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L
Surrogate (Bromofluorobenzene) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limits Date Analyzed		50 67 134* 65-129 09/07/99	μg/L μg/L % %
TOTAL METALS	METHOD	NASJ-159-GH-39-02	<u>Units</u>
Lead 3 Date Analyzed	010/6010b	0.0050 U 09/08/99	mg/L

^{* =} Surrogate recovery outside of laboratory established limits.

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR8408

DATE REPORTED: September 28, 1999 REFERENCE : N0255.FB0.050230 PROJECT NAME : Gas Hill

PAGE 17 OF 26

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-39-02	<u>Units</u>
Naphthalene	0.50 U	μg/L
Acenaphthylene	1.0 U	μg/L
1-Methylnaphthalene	1.0 U	μg/L
2-Methylnaphthalene	1.0 U	μg/L
Acenaphthene	0.50 U	μg/L
Fluorene	1.0 U	μg/L
Phenanthrene	1.0 U	μg/L
Anthracene	0.10 U	μg/L
Fluoranthene	0.10 U	μg/L
Pyrene	0.10 U	μg/L
Benzo(a)anthracene	0.050 U	μg/L
Chrysene	0.050 U	μg/L
Benzo(b)fluoranthene	0.10 U	μg/L
Benzo(k)fluoranthene	0.050 U	$\mu g/L$
Benzo(a)pyrene	0.050 U	μg/L
Dibenzo(a,h)anthracene	0.10 U	μg/L
Benzo(g,h,i)perylene	0.10 U	μg/L
Indeno(1,2,3-cd)pyrene	0.050 U	μ g/L
Surrogate (p-terphenyl)		
Surrogate Expected Value	10.0	μg/L
Surrogate Reported Value	8.4	μg/L
Surrogate Percent Recovery	84	. o/o o/o
Surrogate Control Limit	39-148	%
Date Extracted	09/09/99	
Date Analyzed	09/11/99	

U = Compound was analyzed for but not detected to the level shown.

REPORT # : JR8408

DATE REPORTED: September 28, 1999
REFERENCE : N0255.FB0.050230

PROJECT NAME : Gas Hill

PAGE 18 OF 26

RESULTS OF ANALYSIS

EPA METHOD 5030/8021 -

VOLATILE ORGANICS	NASJ-159-GH-MSMS01-2	<u>Units</u>
Methyl tert-butyl ether	2.0 U	μ g/L
Benzene	1.0 U	μ g/L
Toluene	1.4 I	μ g/L
Chlorobenzene	1.0 U	$\mu exttt{g/L}$
Ethylbenzene	1.0 U	μ g/L
m-Xylene & p-Xylene	1.0 U	μ g/L
o-Xylene	1.0 U	$\mu g/L$
1,3-Dichlorobenzene	1.0 U	μg/L
1,4-Dichlorobenzene	1.0 U	μ g/L
1,2-Dichlorobenzene	1.0 U	$\mu extsf{g}/ extsf{L}$
Surrogate (Bromofluorobenzene)		
Surrogate Expected Value	50	μg/L
Surrogate Reported Value	50.5	μg/L
Surrogate Percent Recovery	101	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Surrogate Control Limits	65-129	%
Date Analyzed	09/07/99	
TOTAL METALS METHOD	NASJ-159-GH-MSMS01-2	Units
1011110	1411DC 155 CII HDHD01-Z	OHILS

Lead Date Analyzed	3010/6010b	0.0050 I 09/08/99	mg/L

U = Compound was analyzed for but not detected to the level shown.

I = Analyte detected; value is between the Method Detection Level (MDL) and the Practical Quantitation Level (PQL).

REPORT # : JR8408

DATE REPORTED: September 28, 1999
REFERENCE: N0255.FBO.050230

PROJECT NAME : Gas Hill

PAGE 19 OF 26

EPA METHOD 3510/8310 - PAH BY HPLC	NASJ-159-GH-MSMS01-2	<u>Units</u>
Naphthalene	0.50 U	μg/L
Acenaphthylene	1.0 U	μg/L
1-Methylnaphthalene	1.0 U	μg/L
2-Methylnaphthalene	1.0 Ŭ	μg/L
Acenaphthene	0.50 U	μg/L
Fluorene	1.0 U	μg/L
Phenanthrene	1.0 U	μg/L
Anthracene	0.10 U	μg/L
Fluoranthene	0.10 U	μg/L
Pyrene	0.10 U	μg/L
Benzo(a)anthracene	0.050 U	μg/L
Chrysene	0.050 U	μ g/L
Benzo(b)fluoranthene	0.10 U	μg/L
Benzo(k)fluoranthene	0.050 U	μg/L
Benzo(a)pyrene	0.050 U	μg/L
Dibenzo(a,h)anthracene	0.10 U	$\mu g/L$
Benzo(g,h,i)perylene	0.10 U	μg/L
Indeno(1,2,3-cd)pyrene	0.050 U	μg/L
Surrogate (p-terphenyl)		
Surrogate Expected Value	10.0	$\mu \mathrm{g}/\mathrm{L}$
Surrogate Reported Value	7.6	μg/L
Surrogate Percent Recovery	76	%
Surrogate Control Limit	39-148	%
Date Extracted	09/09/99	
Date Analyzed	09/11/99	

REPORT # : JR8408

DATE REPORTED: September 28, 1999
REFERENCE: N0255.FB0.050230

PROJECT NAME : Gas Hill

PAGE 20 OF 26

EPA METHOD 5030/8 VOLATILE ORGANICS		NASJ-159-GH-DU01-02	<u>Units</u>
Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene		2.0 U 1.0 U 1.6 I 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L
Surrogate (Bromofluorobenzene) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limits Date Analyzed		50 50 100 65-129 09/07/99	μg/L μg/L % %
TOTAL METALS	METHOD	NASJ-159-GH-DU01-02	<u>Units</u>
Lead Date Analyzed	3010/6010b	0.0050 I 09/08/99	mg/L

 $^{{\}tt U}={\tt Compound}$ was analyzed for but not detected to the level shown.

REPORT # : JR8408

DATE REPORTED: September 28, 1999
REFERENCE: N0255.FB0.050230

PROJECT NAME : Gas Hill

PAGE 21 OF 26

EPA METHOD 3510/8310 -		
PAH BY HPLC	NASJ-159-GH-DU01-02	<u>Units</u>
Naphthalene	0.50 U	μg/L
Acenaphthylene	1.0 U	μg/L
1-Methylnaphthalene	1.0 U	μg/L
2-Methylnaphthalene	1.0 U	μg/L
Acenaphthene	0.50 U	μg/L
Fluorene	1.0 U	μg/L
Phenanthrene	1.0 U	μg/L
Anthracene	0.10 U	μg/L
Fluoranthene	0.10 U	μg/L
Pyrene	0.10 U	μg/L
Benzo(a)anthracene	0.050 U	μg/L
Chrysene	0.050 Ŭ	μg/L
Benzo(b) fluoranthene	0.10 U	μg/L
Benzo(k)fluoranthene	0.050 U	μg/L
Benzo(a)pyrene	0.050 Ŭ	μg/L
Dibenzo(a,h)anthracene	0.10 U	$\mu { t g}/{ t L}$
Benzo(g,h,i)perylene	0.10 U	μg/L
Indeno(1,2,3-cd)pyrene	0.050 Ü	$\mu g/L$
Surrogate (p-terphenyl)		
Surrogate Expected Value	10.0	$\mu \mathrm{g}/\mathrm{L}$
Surrogate Reported Value	4.4	$\mu g/L$
Surrogate Percent Recovery	44	%
Surrogate Control Limit	39-148	0,0
Date Extracted	09/09/99	
Date Analyzed	09/11/99	

REPORT # : JR8408

DATE REPORTED: September 28, 1999
REFERENCE: N0255.FB0.050230

PROJECT NAME : Gas Hill

PAGE 22 OF 26

EPA METHOD 5030/8021 - VOLATILE ORGANICS	TRIP BLANK	Units
Methyl tert-butyl ether	2.0 U	μq/L
Benzene	1.0 U	μg/L
Toluene	1.0 U	$\mu g/L$
Chlorobenzene	1.0 U	μg/L
Ethylbenzene	1.0 U	μg/L
m-Xylene & p-Xylene	1.0 U	μg/L
o-Xylene	1.0 U	μg/L
1,3-Dichlorobenzene	1.0 U	μg/L
1,4-Dichlorobenzene	1.0 U	μg/L
1,2-Dichlorobenzene	1.0 U	μg/L
Surrogate (Bromofluorobenzene)		
Surrogate Expected Value	50	μ g/L
Surrogate Reported Value	51	μg/L
Surrogate Percent Recovery	102	o _o
Surrogate Control Limits	65-129	%
Date Analyzed	09/07/99	

REPORT # : JR8408

DATE REPORTED: September 28, 1999 REFERENCE: N0255.FBO.050230

PROJECT NAME : Gas Hill

PAGE 23 OF 26

EPA METHOD 5030/8021	. -		
VOLATILE ORGANICS		LAB BLANK	<u>Units</u>
Methyl tert-butyl et	her	2.0 U	μg/L
Benzene		1.0 U	μg/L
Toluene		1.0 U	μg/L
Chlorobenzene		1.0 U	μg/L
Ethylbenzene		1.0 U	$\mu { t g}/{ t L}$
m-Xylene & p-Xylene		1.0 U	$\mu { m g}/{ m L}$
o-Xylene		1.0 U	μ g/L
1,3-Dichlorobenzene		1.0 U	μg/L
1,4-Dichlorobenzene		1.0 U	$\mu { m g}/{ m L}$
1,2-Dichlorobenzene		1.0 U	$\mu exttt{g/L}$
Surrogate (Bromofluo			
Surrogate Expected V	alue	50	μg/L
Surrogate Reported V		50	μg/L
Surrogate Percent Re		100	%
Surrogate Control Li	mits	65-129	%
Date Analyzed		09/07/99	
TOTAL METALS	METHOD	LAB BLANK	Units
	10/6010b	0.0050 U	mg/L
Date Analyzed		09/08/99	

 $^{{\}tt U}={\tt Compound}$ was analyzed for but not detected to the level shown.

REPORT # : JR8408

DATE REPORTED: September 28, 1999
REFERENCE: N0255.FBO.050230

PROJECT NAME : Gas Hill

PAGE 24 OF 26

RESULTS OF ANALYSIS

EPA METHOD 3510/8310 -

Bill Heliob 3310, 0310	•	
PAH BY HPLC	LAB BLANK	<u>Units</u>
Naphthalene	0.50 U	μ g/L
Acenaphthylene	1.0 U	μg/L
1-Methylnaphthalene	1.0 U	$\mu g/L$
2-Methylnaphthalene	1.0 U	μg/L
Acenaphthene	0.50 U	$\mu { m g}/{ m L}$
Fluorene	1.0 U	$\mu exttt{g}/ exttt{L}$
Phenanthrene	1.0 U	μg/L
Anthracene	0.10 U	$\mu { m g}/{ m L}$
Fluoranthene	0.10 U	$\mu { m g/L}$
Pyrene	0.10 U	μ g/L
Benzo(a)anthracene	0.050 U	μ g/L
Chrysene	0.050 U	$\mu { m g/L}$
Benzo(b)fluoranthene	0.10 U	$\mu extsf{g/L}$
Benzo(k)fluoranthene	0.050 U	$\mu { t g}/{ t L}$
Benzo(a)pyrene	0.050 U	$\mu exttt{g/L}$
Dibenzo(a,h)anthracene	0.10 U	$\mu exttt{g/L}$
Benzo(g,h,i)perylene	0.10 U	$\mu { t g}/{ t L}$
Indeno(1,2,3-cd)pyrene	0.050 U	$\mu { t g}/{ t L}$
Surrogate (p-terphenyl)		
Surrogate Expected Value	10.0	$\mu extsf{g}/ extsf{L}$
Surrogate Reported Value	8.6	μg/L
Surrogate Percent Recovery	86	00000
Surrogate Control Limit	39-148	%
Date Extracted	09/09/99	
Date Analyzed	09/11/99	

REPORT # : JR8408

DATE REPORTED: September 28, 1999
REFERENCE: N0255.FB0.050230

PROJECT NAME : Gas Hill

PAGE 25 OF 26

EPA METHOD 5030/8021 -		
VOLATILE ORGANICS	LAB BLANK	<u>Units</u>
Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	2.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L
Surrogate (Bromofluorobenzene) Surrogate Expected Value Surrogate Reported Value Surrogate Percent Recovery Surrogate Control Limits Date Analyzed	50 50 100 65-129 09/08/99	μg/L μg/L % %

REPORT # : JR8408

DATE REPORTED: September 28, 1999
REFERENCE: N0255.FB0.050230

PROJECT NAME : Gas Hill

PAGE 26 OF 26

QUALITY CONTROL DATA

Parameter	% RECOVERY MS/MSD/LCS	LCS TARGET µg/L	ACCEPT LIMITS	% RPD MS/MSD	ACCEPT LIMITS
EPA Method 5030/8021 Benzene Toluene Ethylbenzene o-Xylene	100/101/102	20	60-138	<1	17
	125/124/110	20	57-138	<1	16
	109/105/104	20	49-144	4	17
	102/102/104	20	50-151	<1	17
EPA Method 3510/8310 Naphthalene Acenaphthene Benzo(a)pyrene Benzo(g,h,i)perylene	93/ 88/ 84	10	22-130	6	20
	92/ 86/ 83	10	14-163	7	19
	97/ 97/ 94	1	33-137	<1	36
	66/ 64/ 50	2	36-135	3	34
Total Metals Lead, 3010/6010b	101/100/102	1	68-126	<1	19

NOTE: Pb LCS target units are mg/L

Environmental Conservation Laboratories Comprehensive QA Plan #960038

< = Less Than

MS = Matrix Spike

MSD = Matrix Spike Duplicate

LCS = Laboratory Control Standard

RPD = Relative Percent Difference

This report shall not be reproduced except in full, without the written approval of the laboratory. Results for these procedures apply only to the samples as submitted.

MYO 140 PAGE / OF / TETRA TECH NUS. INC. NUMBER CHAIN OF CUSTODY PROJECT NO:
NO255. FBO.050230 GAS HILL
SAMPLERS (SIGNATURE)

Which w. Dale

Eve Pale PROJECT MANAGER AND PHONE NUMBER

Greg Roof 904 743-1-281-0400

FIELD OPERATIONS LEADER AND PHONE NUMBER LABORATORY NAME AND CONTACT: ENCO ADDRESS CITY, STATE

TACKSONVILLE, FL 32824 MERVINDAR 904 281-0400 CARRIER/WAYBILL NUMBER Nore **CONTAINER TYPE** PLASTIC (P) or GLASS (G) STANDARD TAT 21DAYS **PRESERVATIVE** None, -HNO3. USED BUN X HIGH RIVING Land Horse No. OF CONTAINERS White (3)0 0 GRAB (G) COMP (C) DATE YEAR TIME **COMMENTS SAMPLE ID** 09/02 1435 NAST-159-GH-35-02 GW 1442 NAST-159-GH-36-02 2 1529 NASJ-159-GH-37-02 2 woler 1622 NAST-159-64-33-02 GW GW NASI-159-GH-32-02 GW 6W 1030 MAST-159-6H-38-02 2 @ ALL VOA VIAZ 60 IN one couler. 1030 NAST-159-GH-MSMSD1-02 GW 0000 NASJ-159-GH-DURI-02 GW W 1. RELINOS SALES BY 16:5T 3. RELINQUISHED BY DATE TIME 3. RECEIVED BY DATE TIME COMMENTS

DISTRIBUTION:

sample_no	run_number	parameter	method	units	idl	mdl	crdl_crql	dil_factor	pct moist
NASJ-159-GH-32-02	1	Lead	3050/6010	mg/L	0.003		0.005	1	_
NASJ-159-GH-32-02	1	Naphthalene	3510/8310	ug/L		0.2	0.5	1	
NASJ-159-GH-32-02	1	Acenaphthylene	3510/8310	ug/L		0.1	1	1	
NASJ-159-GH-32-02	1	1-Methylnaphthalene	3510/8310	ug/L		0.1	1	1	
NASJ-159-GH-32-02	1	2-Methylnaphthalene	3510/8310	ug/L		0.2	1	1	
NASJ-159-GH-32-02	1	Acenaphthene	3510/8310	ug/L		0.2	0.5	. 1	
NASJ-159-GH-32-02	1	Fluorene	3510/8310	_		0.04	0.1	1	
NASJ-159-GH-32-02	1	Phenanthrene	3510/8310			0.04	1	1	
NASJ-159-GH-32-02	1	Anthracene	3510/8310			0.03	0.05	1	
NASJ-159-GH-32-02	1	Fluoranthene	3510/8310			0.04	0.1	1	
NASJ-159-GH-32-02	1	Pyrene	3510/8310			0.04	0.05	1	
NASJ-159-GH-32-02	1	Benzo(a)anthracene	3510/8310	-		0.02	0.05	1	
NASJ-159-GH-32-02	1	Chrysene	3510/8310	_		0.02	0.05	1	
NASJ-159-GH-32-02	1	Benzo(b) fluoranthene	3510/8310			0.06	0.1	1	
NASJ-159-GH-32-02	1	Benzo(k) fluoranthene	3510/8310	_		0.03	0.05	1	
NASJ-159-GH-32-02	1	Benzo (a) pyrene	3510/8310			0.03	0.05	1	
NASJ-159-GH-32-02	1	Dibenzo(a,h)anthracene	3510/8310	_		0.07	0.1	1	
	1	Benzo(g,h,i)perylene	3510/8310			0.07	0.1	1	
NASJ-159-GH-32-02	1			-			0.05		
NASJ-159-GH-32-02		Indeno(1,2,3-cd)pyrene	3510/8310	ug/L		0.02	0.05	1	
NASJ-159-GH-32-02	1	P-Terphenyl	3510/8310			0 7	_	1	
NASJ-159-GH-32-02	1	Methyl tert-butyl ether		-		0.3	2	1	
NASJ-159-GH-32-02	1	Benzene	5030/8021	_		0.2	1	1	
NASJ-159-GH-32-02	1	Toluene	5030/8021			0.4	1	1	
NASJ-159-GH-32-02	1	Chlorobenzene	5030/8021	_		0.4	1	1	
NASJ-159-GH-32-02	1	Ethylbenzene	5030/8021			0.2	1	1	
NASJ-159-GH-32-02	1	m-Xylene & p-Xylene	5030/8021			0.3	1	1	
NASJ-159-GH-32-02	1	o-Xylene	5030/8021	-		0.2	1	1	
NASJ-159-GH-32-02	1	1,3-Dichlorobenzene	5030/8021			0.6	1	. 1	
NASJ-159-GH-32-02	1.	1,4-Dichlorobenzene	5030/8021	ug/L		0.4	1	1	
NASJ-159-GH-32-02	1	1,2-Dichlorobenzene	5030/8021	-		0.6	1	1	
NASJ-159-GH-32-02	1	Bromofluorobenzene	5030/8021	ક				1	
NASJ-159-GH-33-02	1	Lead	3050/6010	mg/L	0.003		0.005	1	
NASJ-159-GH-33-02	1	Naphthalene	3510/8310	ug/L		0.2	0.5	1	
NASJ-159-GH-33-02	1	Acenaphthylene	3510/8310	ug/L		0.1	1	1	
NASJ-159-GH-33-02	1	1-Methylnaphthalene	3510/8310	ug/L		0.1	1	1	
NASJ-159-GH-33-02	. 1	2-Methylnaphthalene	3510/8310	ug/L		0.2	1	1	
NASJ-159-GH-33-02	1	Acenaphthene	3510/8310	ug/L		0.2	0.5	1	
NASJ-159-GH-33-02	1	Fluorene	3510/8310	ug/L		0.04	0.1	1	
NASJ-159-GH-33-02	1	Phenanthrene	3510/8310	ug/L		0.04	1	1	
NASJ-159-GH-33-02	1	Anthracene	3510/8310	ug/L		0.03	0.05	. 1	
NASJ-159-GH-33-02	1	Fluoranthene	3510/8310	ug/L		0.04	0.1	1	
NASJ-159-GH-33-02	1	Pyrene	3510/8310	ug/L		0.04	0.05	1	
NASJ-159-GH-33-02	1	Benzo (a) anthracene	3510/8310	ug/L		0.02	0.05	1	
NASJ-159-GH-33-02	1	Chrysene	3510/8310	ug/L		0.02	0.05	1	
NASJ-159-GH-33-02	1	Benzo(b) fluoranthene	3510/8310	ug/L		0.06	0.1	1	
NASJ-159-GH-33-02	1	Benzo(k) fluoranthene	3510/8310	ug/L		0.03	0.05	1	
NASJ-159-GH-33-02	1	Benzo(a)pyrene	3510/8310	ug/L		0.03	0.05	1	
NASJ-159-GH-33-02	1	Dibenzo(a,h)anthracene	3510/8310	ug/L		0.07	0.1	1	
NASJ-159-GH-33-02	1	Benzo(g,h,i)perylene	3510/8310	ug/L		0.07	0.1	1	
NASJ-159-GH-33-02	1	Indeno(1,2,3-cd)pyrene	3510/8310	-		0.02	0.05	1	
NASJ-159-GH-33-02	1	P-Terphenyl	3510/8310	ક				1	
NASJ-159-GH-33-02	1	Methyl tert-butyl ether	· · · · · · · · · · · · · · · · · · ·			0.3	2	1	
NASJ-159-GH-33-02	1	Benzene	5030/8021			0.2	1	ī	
NASJ-159-GH-33-02	1	Toluene	5030/8021			0.4	1	1	
NASJ-159-GH-33-02	1	Chlorobenzene	5030/8021			0.4	1	1	
NASJ-159-GH-33-02	1	Ethylbenzene	5030/8021			0.2	1	1	
NASJ-159-GH-33-02	1	m-Xylene & p-Xylene	5030/8021	-		0.3	1	1	
NASJ-159-GH-33-02	1	o-Xylene	5030/8021			0.2	1	1	
NASJ-159-GH-33-02	1	1,3-Dichlorobenzene	5030/8021	_		0.6	1	1	
	1	1,4-Dichlorobenzene	5030/8021			0.4	1	1	
NASJ-159-GH-33-02		1,2-Dichlorobenzene	5030/8021			0.4	1		
NASJ-159-GH-33-02	1			_		0.6	1	1	
NASJ-159-GH-33-02	1	Bromofluorobenzene	5030/8021	ક				1	

NASJ-159-GH-34-02	1	Lead	3050/6010	mg/L	0.003	0.005	1	
NASJ-159-GH-34-02	1	Naphthalene	3510/8310	ug/L	0.2	0.5	1	
NASJ-159-GH-34-02	1	Acenaphthylene	3510/8310	ug/L	0.1	1	1	
NASJ-159-GH-34-02	1	1-Methylnaphthalene	3510/8310	ug/L	0.1	1	1	
NASJ-159-GH-34-02	1	2-Methylnaphthalene	3510/8310	ug/L	0.2	1	1	
NASJ-159-GH-34-02	1	Acenaphthene	3510/8310	ug/L	0.2	0.5	1	
NASJ-159-GH-34-02	1	Fluorene	3510/8310	ug/L	0.04	0.1	1	
NASJ-159-GH-34-02	1	Phenanthrene	3510/8310	ug/L	0.04	1	1	
NASJ-159-GH-34-02	1	Anthracene	3510/8310	ug/L	0.03	0.05	1	
NASJ-159-GH-34-02	1	Fluoranthene	3510/8310	ug/L	0.04	0.1	1	
NASJ-159-GH-34-02	1	Pyrene	3510/8310	ug/L	0.04	0.05	1	
NASJ-159-GH-34-02	1	Benzo (a) anthracene	3510/8310	ug/L	0.02	0.05	1	
NASJ-159-GH-34-02	1	Chrysene	3510/8310	ug/L	0.02	0.05	1	
NASJ-159-GH-34-02	1	Benzo(b) fluoranthene	3510/8310	_	0.06	0.1	1	
NASJ-159-GH-34-02	1	Benzo(k) fluoranthene	3510/8310	ug/L	0.03	0.05	1	
NASJ-159-GH-34-02	1	Benzo(a)pyrene	3510/8310	ug/L	0.03	0.05	1	
NASJ-159-GH-34-02	1	Dibenzo(a,h)anthracene	3510/8310	ug/L	0.07	0.1	1	
NASJ-159-GH-34-02	1	Benzo(g,h,i)perylene	3510/8310	ug/L	0.07	0.1	1	
NASJ-159-GH-34-02	1	Indeno(1,2,3-cd)pyrene	3510/8310	ug/L	0.02	0.05	1	
NASJ-159-GH-34-02	1	P-Terphenyl	3510/8310	8			1	
NASJ-159-GH-34-02	1	Methyl tert-butyl ether	5030/8021	uq/L	0.3	2	1	
NASJ-159-GH-34-02	1	Benzene	5030/8021	ug/L	0.2	1	1	
NASJ-159-GH-34-02	1	Toluene	5030/8021	ug/L	0.4	1	1	
NASJ-159-GH-34-02	. 1	Chlorobenzene	5030/8021	ug/L	0.4	1	. 1	
NASJ-159-GH-34-02	1	Ethylbenzene	5030/8021	ug/L	0.2	1	1	
NASJ-159-GH-34-02	1	m-Xylene & p-Xylene	5030/8021	ug/L	0.3	1	1	
NASJ-159-GH-34-02	1	o-Xylene	5030/8021	ug/L	0.2	1	1	
NASJ-159-GH-34-02	1	1,3-Dichlorobenzene	5030/8021	ug/L	0.6	1	1	
	1	1,4-Dichlorobenzene	5030/8021	ug/L	0.4	1	1	
NASJ-159-GH-34-02	1	1,2-Dichlorobenzene	5030/8021	ug/L	0.6	1	1	
NASJ-159-GH-34-02		Bromofluorobenzene	5030/8021	8	0.0	-	1	
NASJ-159-GH-34-02	1				0.003	0.005		
NASJ-159-GH-35-02	1	Lead	3050/6010	mg/L	0.003	0.005	1	
NASJ-159-GH-35-02 NASJ-159-GH-35-02	1 1	Lead Naphthalene	3050/6010 3510/8310	mg/L ug/L	2	5	1 1	0
NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02	1 1 1	Lead Naphthalene Acenaphthylene	3050/6010 3510/8310 3510/8310	mg/L ug/L ug/L	2 1	5 10	1 1 1	0
NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02	1 1 1	Lead Naphthalene Acenaphthylene 1-Methylnaphthalene	3050/6010 3510/8310 3510/8310 3510/8310	mg/L ug/L ug/L ug/L	2 1 1	5 10 10	1 1: 1:	0 0 0
NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02	1 1 1 1	Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene	3050/6010 3510/8310 3510/8310 3510/8310 3510/8310	mg/L ug/L ug/L ug/L ug/L	2 1 1 2	5 10 10 10	1 1: 1: 1:	0 0 0
NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02	1 1 1 1 1	Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene	3050/6010 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	mg/L ug/L ug/L ug/L ug/L	2 1 1 2 2	5 10 10 10 5	1 1: 1: 1: 1:	0 0 0 0
NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02	1 1 1 1 1 1	Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene	3050/6010 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	mg/L ug/L ug/L ug/L ug/L ug/L	2 1 2 2 0.4	5 10 10 10 5	1 1: 1: 1: 1: 1:	0 0 0 0 0
NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02	1 1 1 1 1 1 1	Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene	3050/6010 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	mg/L ug/L ug/L ug/L ug/L ug/L ug/L	2 1 1 2 2 0.4 0.4	5 10 10 10 5 1	1 1: 1: 1: 1: 1: 1:	0 0 0 0 0 0
NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02	1 1 1 1 1 1 1	Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene	3050/6010 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	2 1 1 2 2 0.4 0.4	5 10 10 10 5 1 10	1 1 1 1 1 1 1 1	0 0 0 0 0 0 0
NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02	1 1 1 1 1 1 1 1	Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	3050/6010 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	2 1 1 2 2 0.4 0.4 0.3	5 10 10 10 5 1 10 0.5	1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0
NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02	1 1 1 1 1 1 1 1	Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Fluoranthene Pyrene	3050/6010 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	2 1 1 2 2 0.4 0.4 0.3 0.4	5 10 10 10 5 1 10 0.5 1	1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0
NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02	1 1 1 1 1 1 1 1 1	Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	3050/6010 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	2 1 1 2 2 0.4 0.3 3 0.4 0.4	5 10 10 10 5 1 10 0.5 1 0.5 0.5	1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0
NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02	1 1 1 1 1 1 1 1 1 1	Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	3050/6010 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	2 1 1 2 2 0.4 0.3 0.4 0.4 0.2	5 10 10 10 5 1 10 0.5 1 0.5 0.5	1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0
NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02	1 1 1 1 1 1 1 1 1 1 1	Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	3050/6010 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	2 1 1 2 2 0.4 0.3 0.4 0.4 0.2 0.2	5 10 10 10 5 1 10 0.5 1 0.5 0.5 0.5	1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0
NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02	1 1 1 1 1 1 1 1 1 1 1 1	Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene	3050/6010 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	2 1 1 2 2 0.4 0.3 0.4 0.4 0.2 0.2	5 10 10 10 5 1 10 0.5 1 0.5 0.5 0.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0
NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02 NASJ-159-GH-35-02		Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene	3050/6010 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	2 1 1 2 2 0.4 0.3 0.4 0.2 0.2 0.2	5 10 10 10 5 1 10 0.5 1 0.5 0.5 0.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0
NASJ-159-GH-35-02 NASJ-159-GH-35-02		Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Eenzo(a) pyrene Dibenzo(a,h) anthracene	3050/6010 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	2 1 1 2 2 0.4 0.3 0.3 0.4 0.2 0.2 0.6 6 0.3 0.3	5 10 10 10 5 1 10 0.5 0.5 0.5 0.5 0.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0000000000000000
NASJ-159-GH-35-02 NASJ-159-GH-35-02		Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene	3050/6010 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	2 1 1 2 2 0.4 0.3 0.4 0.2 0.2 0.6 0.3 0.7 0.7	5 10 10 10 5 1 10 0.5 0.5 0.5 0.5 0.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NASJ-159-GH-35-02 NASJ-159-GH-35-02		Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene	3050/6010 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	2 1 1 2 2 0.4 0.3 0.3 0.4 0.2 0.2 0.6 6 0.3 0.3	5 10 10 10 5 1 10 0.5 0.5 0.5 0.5 0.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00000000000000000
NASJ-159-GH-35-02 NASJ-159-GH-35-02		Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene P-Terphenyl	3050/6010 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	2 1 1 2 2 0.4 0.4 0.3 0.4 0.4 0.2 0.2 0.2 0.6 0.3 0.7 0.7	5 10 10 10 5 1 10 0.5 0.5 0.5 0.5 0.5 1 0.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000000000000000
NASJ-159-GH-35-02 NASJ-159-GH-35-02		Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether	3050/6010 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	2 1 1 2 2 0.4 0.3 0.4 0.4 0.2 0.2 0.6 0.3 0.7 0.7	5 10 10 10 5 1 10 0.5 1 0.5 0.5 0.5 1 0.5 0.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0000000000000000000
NASJ-159-GH-35-02 NASJ-159-GH-35-02		Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene	3050/6010 3510/8310	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	2 1 1 2 2 0.4 0.3 0.4 0.2 0.2 0.6 6 0.3 0.7 0.7 0.7	5 10 10 10 5 1 10 0.5 0.5 0.5 0.5 0.5 0.5 0.5	11 11 11 11 11 11 11 11 11 11 11 11 11	000000000000000000000000000000000000000
NASJ-159-GH-35-02 NASJ-159-GH-35-02		Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene	3050/6010 3510/8310	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	2 1 1 2 2 0.4 0.3 0.4 0.2 0.2 0.6 0.3 0.7 0.7 0.7 0.2	5 10 10 10 5 1 10 0.5 0.5 0.5 0.5 0.5 1 0.5 2 1	11 11 11 11 11 11 11 11 11 11 11 11 11	000000000000000000000000000000000000000
NASJ-159-GH-35-02 NASJ-159-GH-35-02		Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene	3050/6010 3510/8310	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	2 1 1 2 2 0.4 0.3 0.4 0.2 0.2 0.6 0.3 0.7 0.7 0.7 0.2	5 10 10 10 5 1 10 0.5 0.5 0.5 0.5 0.5 1 0.5 2 1	11 11 11 11 11 11 11 11 11 11 11 11 11	000000000000000000000000000000000000000
NASJ-159-GH-35-02 NASJ-159-GH-35-02		Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Benzo(g, h, i) perylene Indeno(1, 2, 3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene	3050/6010 3510/8310	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	2 1 1 2 2 0.4 0.3 0.4 0.4 0.2 0.2 0.6 0.3 0.7 0.7 0.7 0.2 0.3	5 10 10 10 5 1 10 0.5 0.5 0.5 0.5 0.5 0.5 2 1 0.5		000000000000000000000000000000000000000
NASJ-159-GH-35-02 NASJ-159-GH-35-02		Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene	3050/6010 3510/8310	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	2 1 1 2 2 0.4 0.4 0.3 0.4 0.2 0.2 0.6 0.3 0.7 0.7 0.2 0.2	5 10 10 10 0.5 1 0.5 0.5 0.5 0.5 0.5 1 0.5 2 1 1 1		000000000000000000000000000000000000000
NASJ-159-GH-35-02 NASJ-159-GH-35-02		Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Benzo(g, h, 1) perylene Indeno(1, 2, 3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene	3050/6010 3510/8310	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	2 1 1 2 2 0.4 0.3 0.4 0.2 0.2 0.6 6 0.3 0.7 0.7 0.7 0.7 0.2 0.2 0.4 0.4 0.3	5 10 10 10 0.5 1 0.5 0.5 0.5 0.5 0.5 1 0.5 2 1 1 1 1		000000000000000000000000000000000000000
NASJ-159-GH-35-02 NASJ-159-GH-35-02		Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 0-Xylene 1,3-Dichlorobenzene	3050/6010 3510/8310 3510/8021 5030/8021 5030/8021 5030/8021	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	2 1 1 2 2 0.4 0.3 0.4 0.2 0.2 0.6 0.3 0.7 0.7 0.7 0.7 0.2 0.4 0.4 0.2 0.2 0.2 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.3 0.4 0.3 0.3 0.4 0.3 0.4 0.3 0.3 0.4 0.3 0.3 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	5 10 10 10 5 1 10 0.5 0.5 0.5 0.5 1 0.5 2 1 1 1 1		000000000000000000000000000000000000000
NASJ-159-GH-35-02 NASJ-159-GH-35-02		Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) fluoranthene Benzo(a) pyrene Dibenzo(a, n) anthracene Benzo(g, h, i) perylene Indeno(1, 2, 3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 0-Xylene 1, 3-Dichlorobenzene 1, 4-Dichlorobenzene	3050/6010 3510/8310 5030/8021 5030/8021 5030/8021 5030/8021 5030/8021	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	2 1 1 2 2 0.4 0.3 0.4 0.2 0.2 0.6 0.3 0.7 0.7 0.7 0.7 0.2 0.4 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	5 10 10 10 5 1 10 0.5 0.5 0.5 0.5 0.5 0.5 2 1 1 1 1 1		000000000000000000000000000000000000000
NASJ-159-GH-35-02 NASJ-159-GH-35-02		Lead Naphthalene Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 0-Xylene 1,3-Dichlorobenzene	3050/6010 3510/8310 3510/8021 5030/8021 5030/8021 5030/8021	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	2 1 1 2 2 0.4 0.3 0.4 0.2 0.2 0.6 0.3 0.7 0.7 0.7 0.7 0.2 0.4 0.4 0.2 0.2 0.2 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.3 0.4 0.3 0.3 0.4 0.3 0.4 0.3 0.3 0.4 0.3 0.3 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	5 10 10 10 5 1 10 0.5 0.5 0.5 0.5 1 0.5 2 1 1 1 1		000000000000000000000000000000000000000

NASJ-159-GH-38-02	1	Lead	3050/6010	mct /T.	0.003	0.005	1
NASJ-159-GH-38-02	1	Naphthalene	3510/8310	ug/L	0.003	0.005	1 1
NASJ-159-GH-38-02	1	Acenaphthylene	3510/8310	ug/L	0.2	1	1
NASJ-159-GH-38-02	1	1-Methylnaphthalene	3510/8310	-	0.1	1	
NASJ-159-GH-38-02	1	2-Methylnaphthalene	3510/8310	ug/L	0.2	1	1 1
NASJ-159-GH-38-02	1	Acenaphthene	3510/8310	ug/L	0.2	0.5	
NASJ-159-GH-38-02	1	Fluorene	3510/8310	ug/L	0.04	0.5	1 1
NASJ-159-GH-38-02	1	Phenanthrene	3510/8310	ug/L			
NASJ-159-GH-38-02	1	Anthracene		ug/L ug/L	0.04	1	1
	1	Fluoranthene	3510/8310	-	0.03	0.05	1
NASJ-159-GH-38-02 NASJ-159-GH-38-02	1		3510/8310	ug/L	0.04	0.1	1
	1	Pyrene	3510/8310	ug/L	0.04	0.05	1
NASJ-159-GH-38-02 NASJ-159-GH-38-02	1	Benzo(a) anthracene	3510/8310	ug/L	0.02	0.05	1
	1	Chrysene Benzo(b)fluoranthene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-38-02 NASJ-159-GH-38-02	1	Benzo(k) fluoranthene	3510/8310	ug/L	0.06	0.1	1
	1	Benzo (a) pyrene	3510/8310 3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-38-02	1		3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-38-02	1	Dibenzo(a,h)anthracene		ug/L	0.07	0.1	1
NASJ-159-GH-38-02	1	Benzo(g,h,i)perylene	3510/8310		0.07	0.1	1
NASJ-159-GH-38-02		Indeno(1,2,3-cd)pyrene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-38-02	1	P-Terphenyl	3510/8310	₩	0.2		1
NASJ-159-GH-38-02	1	Methyl tert-butyl ether	5030/8021		0.3	2	1
NASJ-159-GH-38-02	1	Benzene	5030/8021	ug/L	0.2	1	1
NASJ-159-GH-38-02	1	Toluene	5030/8021	-	0.4	1	1
NASJ-159-GH-38-02	1	Chlorobenzene	5030/8021	_	0.4	1	1
NASJ-159-GH-38-02	1	Ethylbenzene	5030/8021	ug/L	0.2	1	1
NASJ-159-GH-38-02	1	m-Xylene & p-Xylene	5030/8021	٠.	0.3	1	1
NASJ-159-GH-38-02	1	o-Xylene	5030/8021		0.2	1	1
NASJ-159-GH-38-02	1	1,3-Dichlorobenzene	5030/8021		0.6	1	1
NASJ-159-GH-38-02	1	1,4-Dichlorobenzene	5030/8021	•	0.4	1	1
NASJ-159-GH-38-02	1	1,2-Dichlorobenzene	5030/8021	ug/L	0.6	1	1
NASJ-159-GH-38-02	1	Bromofluorobenzene	5030/8021	ક			1
NASJ-159-GH-39-02	1	Lead	3050/6010	-	0.003	0.005	1
NASJ-159-GH-39-02	1	Naphthalene	3510/8310		0.2	0.5	1
		Acenaphthylene		uq/L			
NASJ-159-GH-39-02	1		3510/8310	J.	0.1	1	1
NASJ-159-GH-39-02 NASJ-159-GH-39-02	1	1-Methylnaphthalene	3510/8310	ug/L	0.1	1	1
NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02	1 1	1-Methylnaphthalene 2-Methylnaphthalene	3510/8310 3510/8310	ug/L ug/L	0.1 0.2	1 1	1
NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02	1 1 1	1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene	3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L	0.1 0.2 0.2	1 1 0.5	1 1 1
NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02	1 1 1	1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene	3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L	0.1 0.2 0.2 0.04	1 1 0.5 0.1	1 1 1
NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02	1 1 1 1	1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L	0.1 0.2 0.2 0.04 0.04	1 1 0.5 0.1	1 1 1 1
NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02	1 1 1 1 1	1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L	0.1 0.2 0.2 0.04 0.04 0.03	1 0.5 0.1 1	1 1 1 1 1
NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02	1 1 1 1 1	1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L	0.1 0.2 0.2 0.04 0.04 0.03 0.04	1 0.5 0.1 1 0.05	1 1 1 1 1
NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02	1 1 1 1 1 1	1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 0.2 0.2 0.04 0.04 0.03 0.04	1 0.5 0.1 1 0.05 0.1 0.05	1 1 1 1 1 1
NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02	1 1 1 1 1 1 1	1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 0.2 0.2 0.04 0.04 0.03 0.04	1 0.5 0.1 1 0.05 0.1 0.05 0.05	1 1 1 1 1 1
NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02	1 1 1 1 1 1 1 1	1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 0.2 0.2 0.04 0.04 0.03 0.04	1 0.5 0.1 1 0.05 0.1 0.05 0.05	1 1 1 1 1 1 1 1 1
NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02	1 1 1 1 1 1 1 1	1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04	1 0.5 0.1 1 0.05 0.1 0.05 0.05	1 1 1 1 1 1 1
NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.04 0.02	1 0.5 0.1 1 0.05 0.1 0.05 0.05	1 1 1 1 1 1 1 1 1
NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02	1 1 1 1 1 1 1 1	1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 0.2 0.2 0.04 0.03 0.04 0.04 0.02 0.02	1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02	1 1 1 1 1 1 1 1 1 1 1	1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 0.2 0.2 0.04 0.03 0.04 0.04 0.02 0.02	1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 0.2 0.2 0.04 0.03 0.04 0.04 0.02 0.02 0.06 0.03	1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02	1 1 1 1 1 1 1 1 1 1 1	1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 0.2 0.2 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.03	1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02 NASJ-159-GH-39-02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 0.2 0.2 0.04 0.03 0.04 0.02 0.02 0.02 0.03 0.07	1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-39-02 NASJ-159-GH-39-02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 0.2 0.2 0.04 0.03 0.04 0.02 0.02 0.02 0.03 0.07	1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-39-02 NASJ-159-GH-39-02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 5030/8021	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 0.2 0.2 0.04 0.03 0.04 0.02 0.02 0.02 0.06 0.03 0.03 0.07 0.07	1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.1 0.05 0.1 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-39-02 NASJ-159-GH-39-02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Benzo(g, h, i) perylene Indeno(1, 2, 3-cd) pyrene P-Terphenyl Methyl tert-butyl ether	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.02 0.06 0.03 0.03 0.07 0.07	1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-39-02 NASJ-159-GH-39-02		1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene	3510/8310 5030/8021 5030/8021	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07	1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASJ-159-GH-39-02 NASJ-159-GH-39-02		1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Benzo(g, h, i) perylene Indeno(1, 2, 3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 5030/8021 5030/8021 5030/8021	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 0.2 0.2 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.07 0.07 0.02	1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.	
NASJ-159-GH-39-02 NASJ-159-GH-39-02		1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 5030/8021 5030/8021 5030/8021 5030/8021	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 0.2 0.2 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02	1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.	
NASJ-159-GH-39-02 NASJ-159-GH-39-02		1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Benzo(g, h, i) perylene Indeno(1, 2, 3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 5030/8021 5030/8021 5030/8021	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 0.2 0.2 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02	1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.	
NASJ-159-GH-39-02 NASJ-159-GH-39-02		1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Benzo(g, h, i) perylene Indeno(1, 2, 3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 5030/8021 5030/8021 5030/8021 5030/8021	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 0.2 0.2 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07	1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.	
NASJ-159-GH-39-02 NASJ-159-GH-39-02		1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(a) pyrene Dibenzo(a, h) anthracene Benzo(g, h, i) perylene Indeno(1, 2, 3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 5030/8021 5030/8021 5030/8021 5030/8021 5030/8021	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.07 0.02	1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.	
NASJ-159-GH-39-02 NASJ-159-GH-39-02		1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(c) fluoranthene Benzo(a) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene Indeno(1,2,3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 1,3-Dichlorobenzene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 5030/8021 5030/8021 5030/8021 5030/8021 5030/8021 5030/8021	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 0.2 0.2 0.04 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.02 0.3 0.2 0.4 0.4 0.2 0.3 0.2 0.6	1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.	
NASJ-159-GH-39-02 NASJ-159-GH-39-02		1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene Dibenzo (a, h) anthracene Benzo (g, h, i) perylene Indeno (1, 2, 3-cd) pyrene P-Terphenyl Methyl tert-butyl ether Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene & p-Xylene 1, 3-Dichlorobenzene 1, 4-Dichlorobenzene	3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 3510/8310 5030/8021 5030/8021 5030/8021 5030/8021 5030/8021 5030/8021	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 0.2 0.2 0.04 0.03 0.04 0.02 0.02 0.06 0.03 0.07 0.07 0.02 0.3 0.4 0.4 0.2 0.4 0.2 0.4	1 1 0.5 0.1 1 0.05 0.1 0.05 0.05 0.05 0.	

	_	Lead	3050/6010	mg/L	0 003	0.005	1
NASJ-159-GH-DU01-02	1		3510/8310	ug/L	0.003	0.003	1
NASJ-159-GH-DU01-02	1	Naphthalene	3510/8310	ug/L	0.2	1	1
NASJ-159-GH-DU01-02	1	Acenaphthylene		ug/L	0.1	1	1
NASJ-159-GH-DU01-02	1	1-Methylnaphthalene	3510/8310		0.2	1	1
NASJ-159-GH-DU01-02	1	2-Methylnaphthalene	3510/8310	ug/L			
NASJ-159-GH-DU01-02	1	Acenaphthene	3510/8310	ug/L	0.2	0.5	1
NASJ-159-GH-DU01-02	1	Fluorene	3510/8310	ug/L	0.04	0.1	1
NASJ-159-GH-DU01-02	1	Phenanthrene	3510/8310	ug/L	0.04	1	1
NASJ-159-GH-DU01-02	1	Anthracene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-DU01-02	1	Fluoranthene	3510/8310	ug/L	0.04	0.1	1
NASJ-159-GH-DU01-02	1	Pyrene	3510/8310	ug/L	0.04	0.05	1
NASJ-159-GH-DU01-02	1	Benzo(a) anthracene	3510/8310	ug/L	0.02	0.05	1
	1	Chrysene	3510/8310	uq/L	0.02	0.05	1
NASJ-159-GH-DU01-02	1	Benzo (b) fluoranthene	3510/8310	ug/L	0.06	0.1	1
NASJ-159-GH-DU01-02			3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-DU01-02	1	Benzo(k) fluoranthene			0.03	0.05	1
NASJ-159-GH-DU01-02	1	Benzo(a)pyrene	3510/8310	-			
NASJ-159-GH-DU01-02	1	Dibenzo(a,h)anthracene	3510/8310	ug/L	0.07	0.1	1
NASJ-159-GH-DU01-02	1	Benzo(g,h,i)perylene	3510/8310		0.07	0.1	1
NASJ-159-GH-DU01-02	1	Indeno (1,2,3-cd) pyrene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-DU01-02	1	P-Terphenyl	3510/8310	ક			1
NASJ-159-GH-DU01-02	1	Methyl tert-butyl ether	5030/8021	ug/L	0.3	2	1
	1	Benzene	5030/8021	uq/L	0.2	1	1
NASJ-159-GH-DU01-02		Toluene	5030/8021	ug/L	0.4	1	1
NASJ-159-GH-DU01-02	1	·	5030/8021	_	0.4	1	ī
NASJ-159-GH-DU01-02	1	Chlorobenzene		-		1	1
NASJ-159-GH-DU01-02	1	Ethylbenzene	5030/8021		0.2		
NASJ-159-GH-DU01-02	1	m-Xylene & p-Xylene	5030/8021	_	0.3	1	1
NASJ-159-GH-DU01-02	1	o-Xylene	5030/8021	ug/L	0.2	1	1
NASJ-159-GH-DU01-02	1	1,3-Dichlorobenzene	5030/8021	ug/L	0.6	1	1
NASJ-159-GH-DU01-02	1	1.4-Dichlorobenzene	5030/8021	ug/L	0.4	1	1
NASJ-159-GH-DU01-02	1	1,2-Dichlorobenzene	5030/8021	ug/L	0.6	1	1
	1	Bromofluorobenzene	5030/8021	8			1
NASJ-159-GH-DU01-02		Lead	3050/6010		0.003	0.005	1
NASJ-159-GH-MSMS01-2	. 1		3510/8310		0.2	0.5	1
NASJ-159-GH-MSMS01-2	1	Naphthalene	•		0.1	1	1
NASJ-159-GH-MSMS01-2	1	Acenaphthylene	3510/8310	ug/L			
NASJ-159-GH-MSMS01-2	1	1-Methylnaphthalene	3510/8310	ug/L	0.1	1	1
NASJ-159-GH-MSMS01-2	1	2-Methylnaphthalene	3510/8310	ug/L	0.2	1	1
NASJ-159-GH-MSMS01-2	1	Acenaphthene	3510/8310	ug/L	0.2	0.5	1
NASJ-159-GH-MSMS01-2	1	Fluorene	3510/8310	ug/L	0.04	0.1	1
NASJ-159-GH-MSMS01-2	.1	Phenanthrene	3510/8310	ug/L	0.04	1	1
	1	Anthracene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-MSMS01-2	ı 1	Fluoranthene	3510/8310	-	0.04	0.1	1
NASJ-159-GH-MSMS01-2			3510/8310		0.04	0.05	1
NASJ-159-GH-MSMS01-2	1	Pyrene	· .		0.02	0.05	1
NASJ-159-GH-MSMS01-2	. 1	Benzo(a) anthracene	3510/8310			0.05	1
NASJ-159-GH-MSMS01-2	1	Chrysene	3510/8310		0.02		1
NASJ-159-GH-MSMS01-2	1	Benzo(b)fluoranthene	3510/8310		0.06	0.1	
NASJ-159-GH-MSMS01-2	1	Benzo(k) fluoranthene	3510/8310	-	0.03	0.05	1
NASJ-159-GH-MSMS01-2	1	Benzo(a)pyrene	3510/8310	ug/L	0.03	0.05	1
NASJ-159-GH-MSMS01-2	1	Dibenzo(a,h)anthracene	3510/8310	ug/L	0.07	0.1	1
NASJ-159-GH-MSMS01-2	1	Benzo(g,h,i)perylene	3510/8310	ug/L	0.07	0.1	1
	1	Indeno(1,2,3-cd)pyrene	3510/8310	ug/L	0.02	0.05	1
NASJ-159-GH-MSMS01-2	1	P-Terphenyl	3510/8310	ક			1
NASJ-159-GH-MSMS01-2	1	Methyl tert-butyl ether			0.3	2	1
NASJ-159-GH-MSMS01-2		Benzene	5030/8021		0.2	1	1
NASJ-159-GH-MSMS01-2	1			- /-		1	. 1
NASJ-159-GH-MSMS01-2	1	Toluene	5030/8021		0.4		
NASJ-159-GH-MSMS01-2	1	Chlorobenzene	5030/8021		0.4	1	1
NASJ-159-GH-MSMS01-2	1	Ethylbenzene	5030/8021		0.2	1	1
NASJ-159-GH-MSMS01-2	1	m-Xylene & p-Xylene	5030/8021	ug/L		1	1
NASJ-159-GH-MSMS01-2	1	o-Xylene	5030/8021	ug/L	0.2	1	1
NASJ-159-GH-MSMS01-2	1	1,3-Dichlorobenzene	5030/8021	ug/L	0.6	1	1
NASJ-159-GH-MSMS01-2	1	1,4-Dichlorobenzene	5030/8021	ug/L	0.4	1	1
-	1	1,2-Dichlorobenzene	5030/8021			1	1
NASJ-159-GH-MSMS01-2		Bromofluorobenzene	5030/8021				1
NASJ-159-GH-MSMS01-2	1				0.3	2	i
TRIP BLANK	1	Methyl tert-butyl ether				1	1
TRIP BLANK	1	Benzene	5030/8021				
TRIP BLANK	1	Toluene	5030/8021	-		1	1
TRIP BLANK	1	Chlorobenzene	5030/8021			1	1
TRIP BLANK	1	Ethylbenzene	5030/8021	. ug/L		1	1
TRIP BLANK	1	m-Xylene & p-Xylene	5030/8021	ug/L	0.3	1	1
TRIP BLANK	1	o-Xylene	5030/8023	L ug/L	0.2	1	1
TRIP BLANK	1	1,3-Dichlorobenzene	5030/802		0.6	1	1
	1	1,4-Dichlorobenzene	5030/802	_		1	1
TRIP BLANK		1,2-Dichlorobenzene	5030/802	_		1	1
TRIP BLANK	1	•	5030/802			_	1
TRIP BLANK	1	Bromofluorobenzene	5030/602.	. 3			-

Environmental Conservation Laboratories, Inc.

4810 Executive Park Court, Suite 211 Jacksonville, Florida 32216-6069 904 / 296-3007 Fax 904 / 296-6210 www.encolabs.com

Enclosed Files:

DHRS Certification No. E82277

I <u>Richard Camp</u>, as the Laboratory Manager, hereby attest that all electronic deliverables have been reviewed and are in agreement with the associated hardcopy data. The enclosed electronic files have been reviewed for accuracy (including significant figures), completeness and format. The laboratory will be responsible for any labor time necessary to correct enclosed electronic deliverables that have been found to be in error. I can be reached at <u>904-296-3007</u> if there are any questions or problems with the enclosed electronic deliverables.

		•
TTNUS Project	ENCO Project (s)	Files(s)
NØ255 /CTO101	JR8358	m-JR8358
		05-5148358
		0v-JR8358
		TPH-JR8358
		W-JR8358
	JR 8408	m-JR8408
		80487L-50
	·	80187E-VO
	<u> </u>	

Title: Ubantry Morning